GRAPHICAL MARKOV MODELS (WS2016)
 4. SEMINAR

Assignment 1. Consider the following probabilistic model for real valued sequences $\boldsymbol{x}=$ $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}$ of fixed length n. Each sequence is a combination of a leading part $i \leqslant k$ and a trailing part $i>k$. The boundary $k=1, \ldots, n$ is random with some categorical distribution $\boldsymbol{\pi} \in \mathbb{R}_{+}^{n}, \sum_{k} \pi_{k}=1$. The values x_{i}, in the leading and trailing part are statistically independent and distributed with some probability density function $p_{1}(x)$ and $p_{2}(x)$ respectively. Altogether the distribution for pairs (\boldsymbol{x}, k) reads

$$
\begin{equation*}
p(\boldsymbol{x}, k)=\pi_{k} \prod_{i=1}^{k} p_{1}\left(x_{i}\right) \prod_{j=k+1}^{n} p_{2}\left(x_{j}\right) . \tag{1}
\end{equation*}
$$

The densities p_{1} and p_{2} are known. Given an i.i.d. sample of sequences $\mathcal{T}^{m}=\left\{\boldsymbol{x}^{\ell} \in \mathbb{R}^{n} \mid \ell=\right.$ $1, \ldots, m\}$, the task is to estimate the unknown boundary distribution π by the EM-algorithm.
a) The E-step of the algorithm requires to compute the values of auxiliary variables $\alpha^{(t)}(k \mid$ $\left.\boldsymbol{x}^{\ell}\right)=p\left(k \mid \boldsymbol{x}^{\ell}\right)$ for each example \boldsymbol{x}^{ℓ} given the current estimate $\boldsymbol{\pi}^{(t)}$ of the boundary distribution. Give a formula for computing these values from model (1).
b) The M -step requires to solve the optimisation problem

$$
\frac{1}{m} \sum_{\ell=1}^{m} \sum_{k=1}^{n} \alpha^{(t)}\left(k \mid \boldsymbol{x}^{\ell}\right) \log p\left(\boldsymbol{x}^{\ell}, k\right) \rightarrow \max _{\pi} .
$$

Substitute the model (1) and solve the optimisation task.
Assignment 2. Prove equivalence of Definitions 1a and 1 b given in the lecture for a Markov model on a tree (see Sec. 10).

Assignment 3. Let $T=(V, E)$ be an undirected tree and $s_{i}, i \in V$ be a field of K-valued random variables. Suppose that $v_{i j}\left(k, k^{\prime}\right), k, k^{\prime} \in K$ is a system of pairwise probabilities associated with the edges $\{i, j\} \in E$ of the tree. Consider the set $\mathcal{P}(\boldsymbol{v})$ of all joint probability distributions $p(s)$, which have \boldsymbol{v} as pairwise marginals, i.e.

$$
\sum_{s \in K^{|V|}} p(s) \delta_{s_{i} k} \delta_{s_{j} k^{\prime}}=v_{i j}\left(k, k^{\prime}\right) \quad \forall\{i, j\} \in E, \forall k, k^{\prime} \in K
$$

We want to find the distribution wit highest entropy

$$
H(p)=-\sum_{s \in K^{|V|}} p(s) \log p(s)
$$

in $\mathcal{P}(\boldsymbol{v})$. Prove that the unique maximiser is the Markov model on the tree T defined by the edge marginals \boldsymbol{v}.
Hint: Formulate and solve the constrained optimisation task by using its Lagrange function.

