GRAPHICAL MARKOV MODELS (WS2013) 4. SEMINAR

Assignment 1. Consider a GRF for binary valued labellings $x: V \to \{0, 1\}$ of a graph (V, E) given by

$$p(x) = \frac{1}{Z} \exp \left[\sum_{ij \in E} u_{ij}(x_i, x_j) + \sum_{i \in V} u_i(x_i) \right].$$

Show that is is always possible to find an equivalent transformation (reparametrisation)

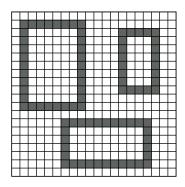
$$u_{ij} \to \tilde{u}_{ij}, \quad u_i \to \tilde{u}_i$$

such that the new pairwise functions \tilde{u}_{ij} have the form

$$\tilde{u}_{ij}(x_i, x_j) = \alpha_{ij} |x_i - x_j|$$

with some reals $\alpha_{ij} \in \mathbb{R}$.

Assignment 2. Consider the language L of all b/w images $x: D \to \{b, w\}$ containing an arbitrary number of non-overlapping and non-touching one pixel wide rectangular frames (see figure).



a) Prove that L is not expressible by a locally conjunctive predicate

$$x \in L$$
 if and only if $f(x) = \bigwedge_{c \in \mathcal{C}} f_c(x_c) = 1$

with predicates f_c , defined on image fragments x_c , where $c \subset D$ have bounded size $|c| \leq m$.

b) Show that L can be expressed by introducing a field $s\colon D\to K$ of non-terminal symbols, a locally conjunctive predicate for these and pixel-wise predicates g "connecting" the non-terminal and terminal symbol in each pixel

$$x \in L$$
 if and only if $\bigvee_{s \in K^D} \left[\bigwedge_{c \in \mathcal{C}} f_c(s_c) \wedge \bigwedge_{i \in D} g(x_i, s_i) \right] = 1$

Find a suitable structure C, alphabet of non-terminal symbols K and predicates f_c , g.

Assignment 3. Consider the class of (Min,+)-problems for K-valued labellings $x \colon V \to K$ of an undirected graph (V, E):

$$x^* = \underset{x \in K^V}{\operatorname{arg min}} \left[\sum_{ij \in E} u_{ij}(x_i, x_j) + \sum_{i \in V} u_i(x_i) \right]$$

where u_{ij} and u_i are real valued functions. Show that this class is NP-hard by proving that every instance of a max-clique problem can be reduced to some instance of an (Min,+)-problem.

Assignment 4. Transform the *Travelling Salesman Problem* into a (Min,+)-problem. *Hints*:

- a) represent a tour by a binary valued $n \times n$ matrix, where rows code the cities and columns the position of the city in the tour,
- b) consider matrix elements as graph vertices and introduce edges and predicates on them in order to penalise labellings which do not represent a valid tour,
- c) finally, introduce edges and edge functions to represent the tour length.