
GRAPHICAL MARKOV MODELS (WS2012)
4. SEMINAR

Assignment 1. Suppose that a regular language L of strings over the alphabet Σ is described
by means of a non-deterministic finite-state machine. Given a string y /∈ L, the task is to find
the string x ∈ L with smallest Hamming distance to y, i.e.

x∗ = arg min
x∈L

dh(x, y),

where dh denotes the Hamming distance. Construct an efficient algorithm for this task.

Assignment 2. Suppose we are given an HMM. In addition, it is decided that the loss function
(penalty for inference errors) is the Hamming distance between the true sequence of hidden
states and the one inferred from the observation.
a) Describe the optimal inference strategy (the strategy which minimises the risk, i.e. the
expected loss).
b) It turns out that some transition probabilities in the HMM model are zero. Some sequences
of hidden states have zero probability as a consequence. Can it happen that the inference
strategy discussed in a) will output a sequence of hidden states with zero probability? Give a
simple example.
c∗) Suppose we want to “repair” the problem in the following way. We simply change the
loss function so that a sequence of hidden states with zero probability will cause a very high
penalty:

c(s, s′) = dh(s, s′) + χ(s′),

where s denotes the true sequence, s′ denotes the inferred sequence and χ is defined as follows

χ(s) =

{
0 if p(s) > 0

+∞ else.

Derive the optimal inference strategy for this modified loss.

Assignment 3. Consider an HMM p(x, s) = p(x | s)p(s) for pairs of sequences (x, s), where
x ∈ F n and s ∈ Kn:

p(s) = p(s1)
n∏

i=2

p(si | si−1) and p(x | s) =
n∏

i=1

p(xi | si).

The transition probabilities and emission probabilities are unknown. It is however known,
that the model is translational invariant. A sample of i.i.d. training data T = {(xj, sj) | j =
1, . . . , `} is given for learning. Modify the formulae for supervised learning (unrestricted case)
for this situation. Prove correctness.

Assignment 4. Consider the following variation of the previous assignment. The observable
features are no longer discrete – instead they are real numbers, i.e., F = R. It is however
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known, that the emission probabilities are Gaussian distributions. For each hidden state k ∈ K
there is a Gaussian p.d.

p(f | k) =
1√

2πσk
e
− (f−µk)

2

2σ2
k

with unknown mean and variance. Derive formulae for learning these model parameters.


