GRAPHICAL MARKOV MODELS (WS2016) 3. SEMINAR

Assignment 1. Suppose that a regular language \mathcal{L} of strings over the finite alphabet Σ is described by a non-deterministic finite-state machine. Given a string $y \notin \mathcal{L}$, the task is to find the string $x \in \mathcal{L}$ with smallest Hamming distance to y, i.e.

$$
x^{*}=\underset{x \in \mathcal{L}}{\arg \min } d_{h}(x, y),
$$

where d_{h} denotes the Hamming distance. Construct an efficient algorithm for solving this task.

Assignment 2. Let \boldsymbol{x} be a grey value image of size $n \times m$, where $x_{i j}$ denotes the grey value of the pixel with coordinates (i, j). The task is to segment such images into an upper and lower part by a boundary represented as a sequence of height values $s_{j} \in\{1,2, \ldots, n\}$ for all $j=1,2, \ldots, m$.

The prior probability for boundaries is assumed to be a homogeneous Markov chain such that $p\left(s_{j} \mid s_{j-1}\right)=0$ if $\left|s_{j}-s_{j-1}\right|>1$. The appearance model for columns \boldsymbol{x}_{j} given the boundary value s_{j}, is assumed to be conditional independent

$$
p\left(\boldsymbol{x}_{j} \mid s_{j}\right)=\prod_{i \leqslant s_{j}} p_{1}\left(x_{i j}\right) \cdot \prod_{i>s_{j}} p_{2}\left(x_{i j}\right),
$$

where $p_{1}()$ and $p_{2}()$ are two distributions for grey values.
a) Deduce an efficient algorithm for determining the most probable boundary.
\mathbf{b}^{*}) Suppose that the loss function $\ell\left(s, s^{\prime}\right)$ for incorrectly recognised boundaries is defined by

$$
\ell\left(s, s^{\prime}\right)=\sum_{j=1}^{m}\left(s_{j}-s_{j}^{\prime}\right)^{2} .
$$

Formulate the segmentation task for this case. Deduce an efficient inference algorithm.
Assignment 3. Consider an HMM for pairs of sequences $(\boldsymbol{x}, \boldsymbol{s}), \boldsymbol{x} \in F^{n}, s \in K^{n}$ with unknown transition probabilities and emission probabilities. It is however known that the model is homogeneous. An i.i.d. sample of training data $\mathcal{T}=\left\{\left(\boldsymbol{x}^{j}, \boldsymbol{s}^{j}\right) \mid j=1, \ldots, m\right\}$ is given for learning. Modify the formulae for the maximum likelihood estimate (see Sec. 7 in lecture notes) for this situation. Prove correctness.

Assignment 4. Consider the following variation of the previous assignment. The observable features are no longer discrete - instead, they are real numbers, i.e., $F=\mathbb{R}$. It is known, that the emission probabilities are Gaussian distributions. For each hidden state $k \in K$ there is a Gaussian p.d.

$$
p(x \mid k)=\frac{1}{\sqrt{2 \pi} \sigma_{k}} e^{-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}}
$$

with unknown mean and variance. Derive formulae for learning these model parameters.

