
GRAPHICAL MARKOV MODELS (WS2016)
3. SEMINAR

Assignment 1.∗ Suppose that a regular language L of strings over the finite alphabet Σ is
described by a non-deterministic finite-state machine. Given a string y /∈ L, the task is to find
the string x ∈ L with smallest Hamming distance to y, i.e.

x∗ = arg min
x∈L

dh(x, y),

where dh denotes the Hamming distance. Construct an efficient algorithm for solving this
task.

Assignment 2. Let x be a grey value image of size n ×m, where xij denotes the grey value
of the pixel with coordinates (i, j). The task is to segment such images into an upper and
lower part by a boundary represented as a sequence of height values sj ∈ {1, 2, . . . , n} for all
j = 1, 2, . . . ,m.

The prior probability for boundaries is assumed to be a homogeneous Markov chain such
that p(sj | sj−1) = 0 if |sj − sj−1| > 1. The appearance model for columns xj given the
boundary value sj , is assumed to be conditional independent

p(xj | sj) =
∏
i6sj

p1(xij) ·
∏
i>sj

p2(xij),

where p1() and p2() are two distributions for grey values.
a) Deduce an efficient algorithm for determining the most probable boundary.
b∗) Suppose that the loss function `(s, s′) for incorrectly recognised boundaries is defined by

`(s, s′) =
m∑
j=1

(sj − s′j)2.

Formulate the segmentation task for this case. Deduce an efficient inference algorithm.

Assignment 3. Consider an HMM for pairs of sequences (x, s), x ∈ F n, s ∈ Kn with
unknown transition probabilities and emission probabilities. It is however known that the
model is homogeneous. An i.i.d. sample of training data T = {(xj, sj) | j = 1, . . . ,m} is
given for learning. Modify the formulae for the maximum likelihood estimate (see Sec. 7 in
lecture notes) for this situation. Prove correctness.

Assignment 4. Consider the following variation of the previous assignment. The observable
features are no longer discrete – instead, they are real numbers, i.e., F = R. It is known, that
the emission probabilities are Gaussian distributions. For each hidden state k ∈ K there is a
Gaussian p.d.

p(x | k) =
1√

2πσk
e
− (x−µk)

2

2σ2
k

with unknown mean and variance. Derive formulae for learning these model parameters.
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