GRAPHICAL MARKOV MODELS (WS2015)
3. SEMINAR

Assignment 1. Consider a fully specified HMM for sequence pairs (z, s) of length n
given by

p(x,s) = p(s1) - HP(Si | sic1) - HP(«%‘ | ).

In addition, it is decided that the loss function (penalty for inference errors) is the Ham-
ming distance between the true sequence of hidden states and the one inferred from the
observation.

a) Describe the optimal inference strategy (i.e. the strategy which minimises the ex-
pected loss).

b) Some transition probabilities of the HMM model are zero. Therefore, some se-
quences of hidden states have zero probability. Can it happen that the strategy you have
found in a) will infer a sequence of hidden states with zero probability? Give a simple
example.

¢*) Suppose we want to “repair”’ the problem in the following way. We modify the loss
function by adding a term which ensures that inferring a sequence of hidden states with
zero probability will cause a very high penalty:

c(s,5") = da(s, ') + x(5),

where s denotes the true sequence, s’ denotes the inferred sequence and Y is defined as

follows
0 if p(s) >0
y(s) = { p( )_
+o00 otherwise.

Derive the optimal inference strategy for this modified loss.

Assignment 27 Suppose that a regular language £ of strings over the finite alphabet X
is described by a non-deterministic finite-state machine. Given a string y ¢ L, the task
is to find the string x € L with smallest Hamming distance to v, i.e.

r* = argmindy(z,y),
el

where d;, denotes the Hamming distance. Construct an efficient algorithm for this task.

Assignment 3. Derive an EM-algorithm for learning the following conditional indepen-
dent probability model (sometimes called “naive Bayes probabilistic model”)

p(z,y, k) = p(xll k)p(y | k)p(k),
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where z € X,y € Y, k € K and all three sets are finite. The training data for
learning are i.i.d. realisations of pairs (z,y) with empirical distribution p*(z,y) (the
corresponding values of k are not observed).

Assignment 4. (Chow, Liu, 1968) Consider a collection of K -valued random variables
s;, © € V. It is known that its joint probability distribution is a Markov model on a tree

(V,E),ie.

p(s) = TI wlsivsy)/ TTptso

{i,J}cE i€V

where n; denotes the degree of vertex :. However, neither the edge set £ nor the pairwise
marginal probabilities p(s;, s;) are known. Given an i.i.d. sample of realisations 7 =
{s’ | s € KV,j = 1,...,(}, the task is to estimate both the tree structure and the
pairwise marginal probabilities on its edges.
a) Explain how to estimate the marginal pairwise probabilities of the model by the
maximum likelihood estimator, provided that the tree structure is known.
b)* Using the result of a), express the likelihood of the training data as a function of
the unknown tree structure. Prove that the optimal tree structure, i.e. the one which has
maximal likelihood, can be found by a maximal spanning tree algorithm.



