
GRAPHICAL MARKOV MODELS (WS2013)
3. SEMINAR

Assignment 1. Consider a fully specified HMM for sequence pairs (x, s) of length n
given by

p(x, s) = p(s1) ·
n∏

i=2

p(si | si−1) ·
n∏

i=1

p(xi | si).

In addition, it is decided that the loss function (penalty for inference errors) is the Ham-
ming distance between the true sequence of hidden states and the one inferred from the
observation.
a) Describe the optimal inference strategy (i.e. the strategy which minimises the ex-
pected loss).
b) Some transition probabilities of the HMM model are zero. Therefore, some se-
quences of hidden states have zero probability. Can it happen that the strategy discussed
in a) will infer a sequence of hidden states with zero probability? Give a simple exam-
ple.
c∗) Suppose we want to “repair” the problem in the following way. We modify the loss
function by adding a term which ensures that inferring a sequence of hidden states with
zero probability will cause a very high penalty:

c(s, s′) = dh(s, s′) + χ(s′),

where s denotes the true sequence, s′ denotes the inferred sequence and χ is defined as
follows

χ(s) =

{
0 if p(s) > 0

+∞ otherwise.
Derive the optimal inference strategy for this modified loss.

Assignment 2.∗ Suppose that a regular language L of strings over the finite alphabet Σ
is described by a non-deterministic finite-state machine. Given a string y /∈ L, the task
is to find the string x ∈ L with smallest Hamming distance to y, i.e.

x∗ = arg min
x∈L

dh(x, y),

where dh denotes the Hamming distance. Construct an efficient algorithm for this task.

Assignment 3. Consider an HMM for pairs of sequences (x, s), x ∈ F n, s ∈ Kn as
in Assignment 1 with unknown transition probabilities and emission probabilities. It is
however known, that the model is homogeneous. A sample of i.i.d. training data T =
{(xj, sj) | j = 1, . . . , `} is given for learning. Modify the formulae for the maximum
likelihood estimate (cf. sec. 7 in lecture notes) for this situation. Prove correctness.
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Assignment 4. Consider the following variation of the previous assignment. The ob-
servable features are no longer discrete – instead, they are real numbers, i.e., F = R.
It is known, that the emission probabilities are Gaussian distributions. For each hidden
state k ∈ K there is a Gaussian p.d.

p(f | k) =
1√

2πσk
e
− (f−µk)

2

2σ2
k

with unknown mean and variance. Derive formulae for learning these model parameters.

Assignment 5. Derive an EM-algorithm for learning the following conditional indepen-
dent probability model (sometimes called “naive Bayes probabilistic model”)

p(x, y, k) = p(x | k)p(y | k)p(k),

where x ∈ X , y ∈ Y , k ∈ K and all three sets are finite. The training data for
learning are i.i.d. realisations of pairs (x, y) with empirical distribution p∗(x, y) (the
corresponding values of k are not observed).


