GRAPHICAL MARKOV MODELS (WS2016)
 2. SEMINAR

We consider the following Markov chain model assignments 1-3. The p.d. for sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of length n with states $s_{i} \in K$ is given by:

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) .
$$

The transition probabilities $p\left(s_{i} \mid s_{i-1}\right)$ and the p.d. $p\left(s_{1}\right)$ for the state of the first element are assumed to be known.

Assignment 1.

a) Suppose that the marginal p.d.s $p\left(s_{i}\right)$ for the states of the i-th element of the sequence are known for all $i=2, \ldots, n$. Then it is easy to calculate all "inverse" transition probabilities $p\left(s_{i-1} \mid s_{i}\right)$. How?
b) Describe an efficient algorithm for calculating $p\left(s_{i}\right)$ for all $i=2, \ldots, n$.

Assignment 2. Suppose that there is a special state $k^{*} \in K$. We want to know how often this state appears on average in a sequence generated by the model. Describe an efficient method for the calculation of this average.
Hint: You may use the fact that the expected value of a sum of random variables is equal to the sum of their expected values. The number of occurrences of the state k^{*} in a sequence s can be obviously written in the form

$$
\delta_{s_{1} k^{*}}+\delta_{s_{2} k^{*}}+\ldots+\delta_{s_{n} k^{*}}
$$

where $\delta_{i j}$ denotes the Kronecker delta.
Assignment 3. Let $A \subset K$ be a subset of states and let $\mathcal{A}=A^{n}$ denote the set of all sequences s with $s_{i} \in A$ for all $i=1, \ldots, n$. Find an efficient algorithm for calculating the probability $p(\mathcal{A})$ of the event \mathcal{A}.
Assignment 4. According to Definition 1b of Sec. 1 of the lecture, any Markov chain model can be specified in the form

$$
p(s)=\frac{1}{Z} \prod_{i=2}^{n} g_{i}\left(s_{i-1}, s_{i}\right)
$$

with arbitrary functions $g_{i}: K^{2} \rightarrow \mathbb{R}_{+}$and the normalisation constant Z. Find an algorithm for computing the pairwise marginal probabilities $p\left(s_{i-1}=k, s_{i}=k^{\prime}\right)$ for all $k, k^{\prime} \in K$ and all $i=2, \ldots, n$ from the given functions $g_{i}, i=2, \ldots, n$.

