GRAPHICAL MARKOV MODELS (WS2014) 2. SEMINAR

We consider the following Markov chain model for all subsequent assignments. The p.d. for sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of length n with states $s_{i} \in K$ is given by:

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

The transition probabilities $p\left(s_{i} \mid s_{i-1}\right)$ and the p.d. $p\left(s_{1}\right)$ for the state of the first element are assumed to be known.

Assignment 1.

a) Suppose that the marginal p.d.s $p\left(s_{i}\right)$ for the states of the i-th element of the sequence are known for all $i=2, \ldots, n$. Then it is easy to calculate all "inverse" transition probabilities $p\left(s_{i-1} \mid s_{i}\right)$. How?
b) Describe an efficient algorithm for calculating $p\left(s_{i}\right)$ for all $i=2, \ldots, n$.

Assignment 2. Suppose that there is a special state $k^{*} \in K$. We want to know how often this state appears on average in a sequence generated by the model. Describe an efficient method for the calculation of this average.
Hint: You may use the fact that the mean value of a sum of random variables is equal to the sum of their means. The number of occurrences of the state k^{*} in a sequence s can be obviously written in the form

$$
\delta_{s_{1} k^{*}}+\delta_{s_{2} k^{*}}+\ldots+\delta_{s_{n} k^{*}}
$$

where $\delta_{i j}$ denotes the Kronecker delta.
Assignment 3. Let $A \subset K$ be a subset of states and let $\mathcal{A}=A^{n}$ denote the set of all sequences s with $s_{i} \in A$ for all $i=1, \ldots, n$. Find an efficient algorithm for calculating the probability $p(\mathcal{A})$ of the event \mathcal{A}.
Assignment 4. Consider a fully specified HMM for sequence pairs (x, s) of length n given by

$$
p(x, s)=p\left(s_{1}\right) \cdot \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) \cdot \prod_{i=1}^{n} p\left(x_{i} \mid s_{i}\right)
$$

Let $k^{*} \in K$ be a fixed, special hidden state. Let us call a subset of positions $I \subset\{1,2, \ldots, n\}$ a segmentation and associate a subset of hidden state sequences with each segmentation:

$$
\mathcal{S}(I)=\left\{s \in K^{n} \mid s_{i}=k^{*}, \forall i \in I \text { and } s_{i} \in K \backslash k^{*}, \forall i \notin I\right\} .
$$

a) Find an efficient algorithm for calculating $p(x, \mathcal{S}(I))$.
$\mathbf{b}^{* *}$) Suppose we want to find the most probable segmentation given an observed feature sequence x

$$
I^{*}=\underset{I}{\arg \max } p(x, \mathcal{S}(I)) .
$$

Deduce an efficient algorithm for this task.

Assignment 5. Let x be a gray value image of size $n \times m$, where $x_{i j}$ denotes the gray value of the pixel with coordinates (i, j). The task is to segment such images into an upper and lower part by a boundary represented as a sequence of height values $s_{j} \in\{1,2, \ldots, n\}$ for all $j=1,2, \ldots, m$.

The prior probability for boundaries is assumed to be a homogeneous Markov chain such that $p\left(s_{j} \mid s_{j-1}\right)=0$ if $\left|s_{j}-s_{j-1}\right|>1$. The appearance model for columns \vec{x}_{j} given the boundary value s_{j}, is assumed to be conditional independent

$$
p\left(\vec{x}_{j} \mid s_{j}\right)=\prod_{i \leqslant s_{j}} p_{1}\left(x_{i j}\right) \cdot \prod_{i>s_{j}} p_{2}\left(x_{i j}\right),
$$

where $p_{1}()$ and $p_{2}()$ are two pd-s for gray values.
a) Deduce an efficient algorithm for determining the most probable boundary.
$\mathbf{b}^{* *}$) Suppose that the loss function $c\left(s, s^{\prime}\right)$ for incorrectly recognised boundaries is defined by

$$
c\left(s, s^{\prime}\right)=\sum_{j=1}^{m}\left(s_{j}-s_{j}^{\prime}\right)^{2}
$$

Formulate the segmentation task for this case. Deduce an efficient inference algorithm.

