
Thinking in Patterns with Java
Bruce Eckel

http://www.mindview.net/Books/TIPatterns/

Creational Design Patterns

• Singleton

• Factory Method

• Factory Pattern

• Abstract Factory

• Builder

• Reusable Pool

• Prototype

Singleton (creational)

Class Singleton {

private static Singleton instance = null;

private Singleton() {}; //private constructor

public static Singleton getInstance() {

if (instance == null) {

instance = new Singleton();

}

return instance;

}

}

Factory method (creational)

Class Singleton {

private static Singleton instance = null;

private Singleton() {}; //private constructor

public static Singleton getInstance() {

if (instance == null) {

instance = new Singleton();

}

return instance;

}

}

Abstract Factory Pattern (creational)

Factory
<<abstract nebo interface>>

Product
<<abstract nebo interface>>

Client

ConcreteFactory

public Product createProduct()

ConcreteProduct

Specialised class
just to create an

instance of
Product

createProduct() {
 return new ConcreteProduct();
}

Abstract Factory Pattern (creational)

ClientClass

WidgetFactory
<<abstract nebo interface>>

+ createWindow()

+ createScrollBar()

MotifFactory

+ createWindow()

+ createScrollBar()
MetalFactory

+ createWindow()

+ createScrollBar()

Window
<<abstract nebo interface>>

MetalWindowMotifWindow

ScrollBar
<<abstract nebo interface>>

MetalScrollBarMotifScrollbar

Builder (creational)

AbstractBuilder

<<abstract or interface>>

+ buildStep1()
+ buildStep2()
+ buildStep3()
+ getObject()

Director

+ construct()

construct() {
builder.buidlStep1();
builder.buildStep2();
buidler.buildStep3();
getObject();

}

+ builder

ConcreteBuilder1 ConcreteBuilder2

Prototype (creational)

AbstractPrototype

<<abstract or interface>>

+ clone()

clone() {
 // return copy of self
}

use clone to instantiate

ConcretePrototype1 ConcretePrototype2

Client

clone() {
 // return copy of self
}

Client

ReusablePool
<<singleton>>

+ acquireReusable(): Reusable

+ releaseReusable(): Reusable

Reusable

u
se

s

1

0..*

+ pool

0..*
11

*

Reusable Pool (creational)

Structural Design Patterns

• Adapter

• Bridge (sometimes considered to be a behavioral DP)

• Decorator

• Composite

• Facade

• Proxy

• and more

Adapter (structural)

Client class
Vendor

class

Adapter (structural)

Client class
Vendor

class
Adapter

Adapter (structural)

AdapterClient class
Vendor

class

Adapter (structural)

Client

Target
<<interface>>

request()

Adapter

request()

Adaptee

specificRequest()

The Dependency Inversion Principle

• High level modules should not depend upon low level

modules; both should depend on abstractions.

• Abstractions should not depend upon details;
details should depend upon abstractions.

KávovarETA

KávaSMlékem
KávaSMlékem

ACukrem
KávaSCukrem

KávovarAEG KávovarBosh

The Dependency Inversion Principle

KávovarETA

KávaSMlékem
KávaSMlékem

ACukrem
KávaSCukrem

KávovarAEG KávovarBosh

<<interface>>
Kávovar

KávaSMlékem
KávaSMlékem

ACukrem
KávaSCukrem

<<interface>>
Káva

KávovarETA KávovarAEG KávovarBosh

0..*

Bridge
Implementation

Abstraction refinement

Bridge

Bridge

imp

Bridge

Bridge

imp

imp.devDrawLine();

imp.devDrawLine();

imp.devDrawLine();

imp.devDrawLine();

DrawRect();

DrawText(); XDrawLine();
XDrawString();

Bridge (structural)

AbstractUser

<<abstract or interface>>

+ operation()

AbstractProvider

<<interface>>

+ oper1()
+ oper2()

Provider1

+ oper1()
+ oper2()

Provider2

+ oper1()
+ oper2()

User1

+ operation()

User2

+ operation()

operation() {
provider.oper2();

}

provider

operation() {
provider.oper1();

}

Bridge (structural)

1. The Bridge pattern is intended to keep the interface to your
client class constant while allowing you to change the actual
kind of class you use.

2. You can extend the implementation class and the bridge class
separately, and usually without much interaction with each
other (avoiding permanent binding between abstraction and its
implementation).

3. You can hide implementation details from the client class
much more easily.

Decorator
Kávovar

KávaSMlékem
KávaSMlékem

ACukrem
KávaSCukrem

<<abstract nebo interface>>
Káva

Possible class explosion
(hard to maintain)

Decorator patterns helps ...

The Open-Close Design Principle

Software entities like classes, modules and functions should be

open for extension but closed for modifications.

Adding new functionality should involve minimal changes to

existing code.

=> adding new functionality will not break the old
functionality

=> old functionality need not be re-tested

Most changes will be handled as new methods and new classes.
Designs following this principle would result in resilient code which does
not break on addition of new functionality.

Decorator (structural)

Káva

Decorator (structural)

KávaS cukrem

Decorator (structural)

KávaS cukremS mlékem

S cukrem

Decorator (structural)

KávaS cukremS mlékem

Decorator (structural)

Component
<< abstract >>

methodA()
methodB()

// other methods

ConcreteComponent

methodA()
methodB()

// other methods

Decorator
<< abstract >>

methodA()
methodB()

// other methods

ConcreteDecoratorA

methodA()
methodB()

// other methods

ConcreteDecoratorB

methodA()
methodB()

// other methods

0..1

1
ClientClass

Decorator (structural)

Component
<< abstract >>

methodA()
methodB()

// other methods

ConcreteComponent

methodA()
methodB()

// other methods

Decorator
<< abstract >>

methodA()
methodB()

// other methods

ConcreteDecoratorA

methodA()
methodB()

// other methods

ConcreteDecoratorB

methodA()
methodB()

// other methods

0..1

1
ClientClass

Káva

S cukrem

S mlékem

Decorator (structural)

Kava kava = new Kava();

Kava kavaSMlekem = new SMlekem(kava);

Kava kavaSCukremSMlekem = new SCukrem(kavaSMlekem);

Decorator (structural)

The Decorator Pattern attaches additional functionalities

to an object dynamically.

Decorators provide a flexible alternative to subclassing
for extending functionality.

Decorator prevents explosion of (sub)classes.

Composite (structural)

graphic

Composite (structural)

graphic

Forall g in graphic

g.draw();

Add g to the graphic

list

Composite (structural)

Composite (structural)

Forwards the

operation to

all children

Default empty

implementation

Views all components

uniformly regardless

whether leaf or

composite

Façade (structural)

Client Facade

A

B

C
D

E
F

A complex subsystem

The façade provides a unified

interface that is easier to use

Façade (structural)

The Façade Pattern provides a unified interface to a set

of interfaces in a subsystem. Façade defines a higher-level
interface that makes the system easier to use.

Design Principle
Principle of least knowledge -
talk only to your immediate

friends.

Client Facade

A

B

C
D

E
F

Proxy (structural)

The Proxy Pattern provides a surrogate or placeholder

for another object to access control to it.

Real
Subject

Client Proxy

request()
request()

Proxy (structural)

With Remote Proxy, the proxy act as a local

representative for an object that lives in a different JVM.

Real
Subject

Client Proxy

request()
request()

A remote object

Proxy (structural)

Virtual Proxy acts as a representative for an object that

may be expensive to create. The virtual proxy often
defers creation of the object until it is needed. After that,

the virtual proxy delegates requests to the RealSubject.

Real
Subject

Client Proxy

request()

request()

Proxy (structural)

<<interface>>
Subject

request()

RealSubject

request()

Proxy

request()

subject

The Proxy often
instantiates or handles

creation of the
RealSubject.

The RealSubject does
most of the work. The

Proxy controls access
to it.

Flyweight (structural)

• Intrinsic state is stored in the ConcreteFlyweight object

• Extrinsic state is stored or computed by Client objects. Clients

pass this state to the flyweight when they invoke they operations

• Clients should not instantiate ConcreteFlyweights directly.

Clients must obtain ConcreteFlyweights from the

FlyweightFactory to ensure they are shared properly.

• not all Flyweight objects need to be shared. It is common for

UnsharedConcreteFlyweight objects to have

ConcreteFlyweight objects as children.

Flyweight (structural)

Pool of

flyweights

Flyweight (structural)

Flyweight

SharedFlyweight

UnsharedFlyweight UnsharedFlyweight

Behavioral Design Patterns

• Command

• Interpreter

• Iterator

• Mediator

• Observer

• State

• Strategy

Command (behavioral)

Command represents an abstract algorithm independent on:

1) The application of the command (Client)
2) The particular implementation of the command (Receiver)

Command (behavioral)

Command encapsulates a request as an object,

thereby letting you parametrize other objects with
different requests, queue or log requests and

support undoable operations.

Receiver
action()

Command

execute() {

receiver.action();

}

Command (behavioral)

Command (behavioral)

Command (behavioral)

• Command decouples the object that invokes the operation from

the one that knows how to perform it.

• You can assemble commands into a composite command

(composite commands are instances of Composite pattern)

• Easy to add new commands.

Behavioral Design Patterns

Behavioral Class Patterns

Behavioral Object Patterns

OtherBehavioral Patterns

Use inheritance to distribute behaviour between classes

• Template Method

• Interpreter

Use composition rather than inheritance to distribute behaviour between objects

• Mediator

• Chain of Responsibility

• Observer

• Strategy

• Command

• Visitor

• Iterator

Template Method

Strategy (behavioral)

<<interface>>
Vehicle

MotionBehavior motion;
EngineBehavior engine;

setMotion();
setEngine();

<<interface>>
MotionBehavior

move();

<<interface>>
EngineBehavior

on();
off()

Flying

move();

Riding

move();

ElectricDrive

on();
off()

CombustionEngine

on();
off()

JetPropulsion

on();
off()

Strategy (behavioral)

The Strategy Pattern defines a family of algorithms,

encapsulates each one, and makes them
interchangeable. Startegy lets the algorithm vary

independently from clients that use it.

Desing Principal

Favor composition over inheritance.

Observer (behavioral)

Subject

Observer1

Observer2

Observer3

notify()

notify()

notify()An object holding

a state and notifying

its observers about state’s

change.

The aim is to make subject independent on observers
- loose coupling.

Observer (behavioral)

<<interface>>
Observer

update()

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObserver()

ConcreteSubject

Object state;

registerObserver();
removeObserver();
notifyObserver();

getState();
setState();

ConcreteObserver

update();

observers

subject

This association needed
for unsubscribing

(removeObserver())

Observer (behavioral)

Desing Principle

Loosely coupled designs allows us to build flexible OO

systems that can handle change because they
minimize the interdependency between objects.

Mediator (behavioral)

• define an object that encapsulates how a set of objects

interacts

• mediator promotes loose coupling by keeping objects from

refering to each other explicitly

• it lets you vary their interactions independently

Mediator

Mediator (behavioral)

Mediator (behavioral)

State (behavioral)

State Pattern allows an object to alter its behavior
when its internal state changes.

Context

state

request();

 public void request() {
state.handle();

 }

<<interface>>
State

handle();

StateB

handle();

StateA

handle();

Visitor (behavioral)

v.visitConcreteElementA

(this)

Visitor (behavioral)

Visitor (behavioral)

• Visitor makes adding new operations easy

simply by adding a new visitor

• A visitor gathers related operations and separates

unrelated ones

• Adding new ConcreteElement classes is hard

Is mostly likely to change the algorithm or the classes

of objects that make up the structure?

• Visitor can accumulate state as they visit each element

