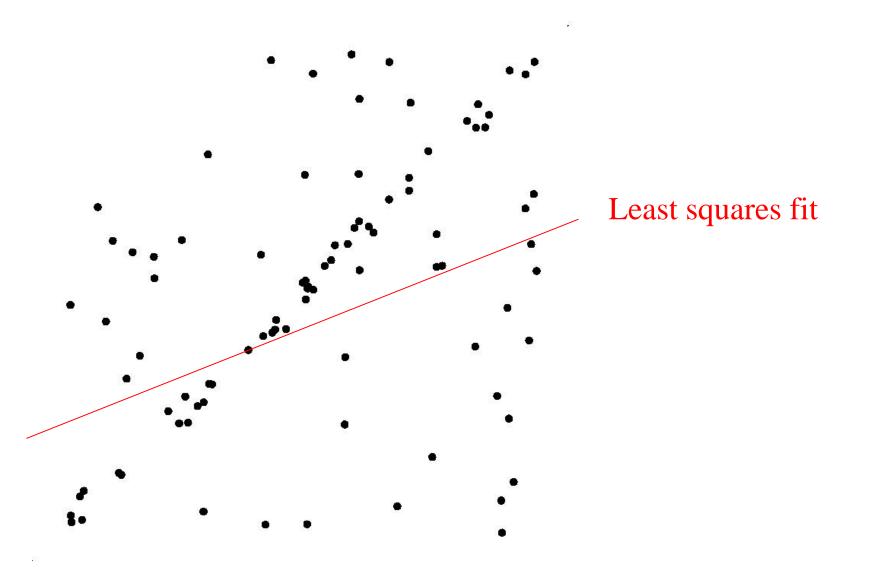
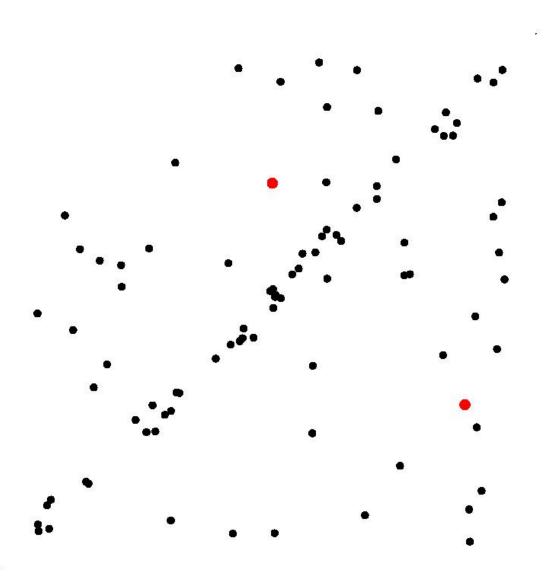
# Robust model estimation from data contaminated by outliers

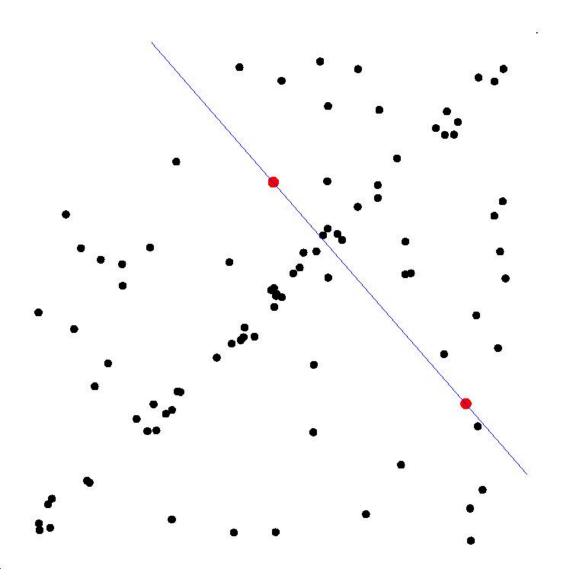
Ondřej Chum

### Fitting a Line



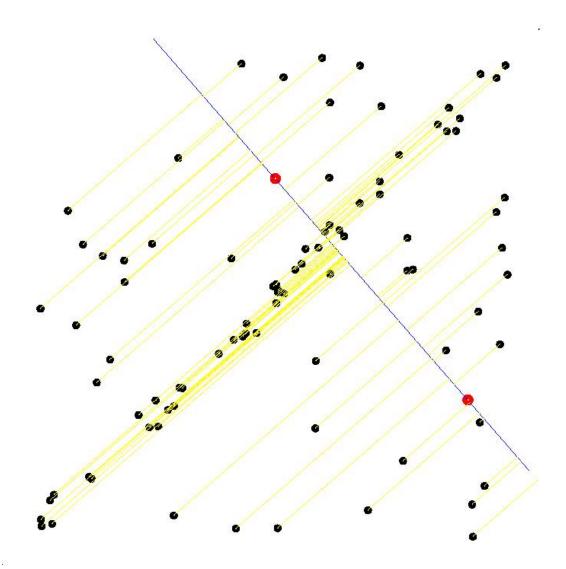


• Select sample of m points at random

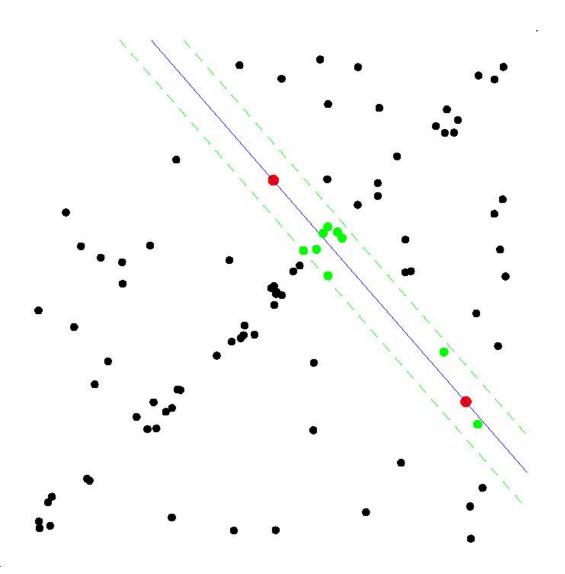


• Select sample of m points at random

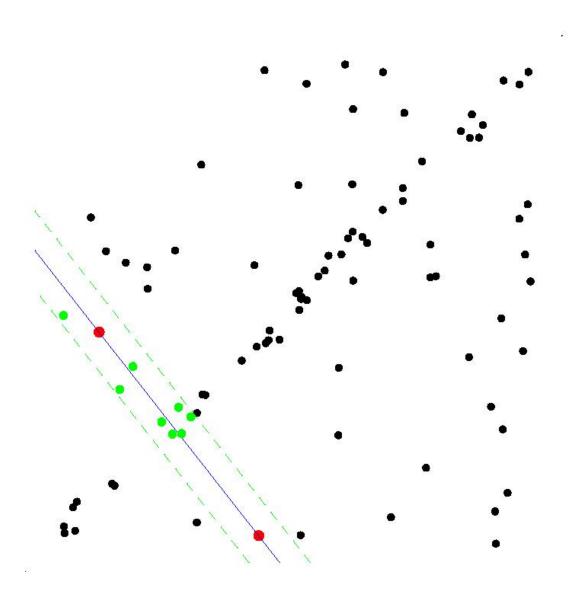
• Calculate model parameters that fit the data in the sample



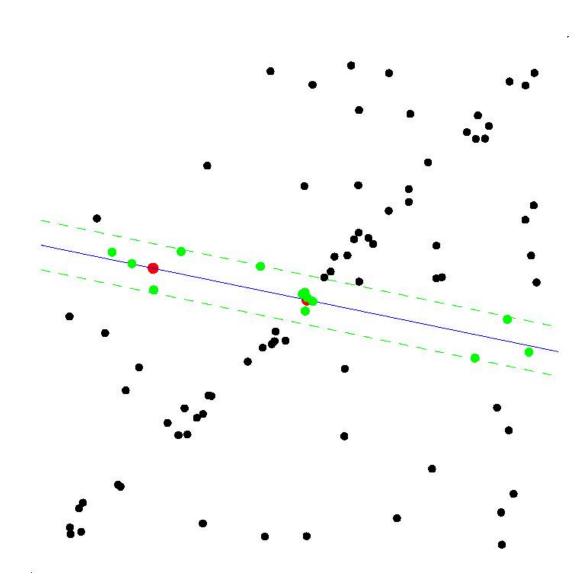
- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point



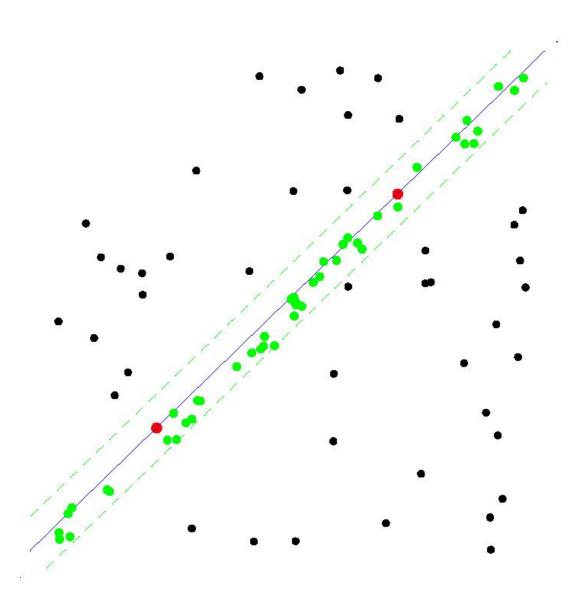
- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis



- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling



- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling



- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

On average

| N | number of points   |
|---|--------------------|
| Ι | number of inliers  |
| т | size of the sample |

$$P(\text{good}) = \frac{\binom{I}{m}}{\binom{N}{m}} = \prod_{j=0}^{m-1} \frac{I-j}{N-j}$$

mean time before the success E(k) = 1 / P(good)

With confidence p

How large k?

... to hit at least one pair of points on the line l with probability larger than p (0.95)

Equivalently

... the probability of not hitting any pair of points on l is  $\leq 1-p$ 

With confidence *p* 

| N | number of point    |
|---|--------------------|
| Ι | number of inliers  |
| т | size of the sample |

$$P(\text{good}) = \frac{\binom{I}{m}}{\binom{N}{m}} = \prod_{j=0}^{m-1} \frac{I-j}{N-j}$$

P(bad) = 1 - P(good)

P(bad *k* times) = 
$$(1 - P(good))^k$$

With confidence *p* 

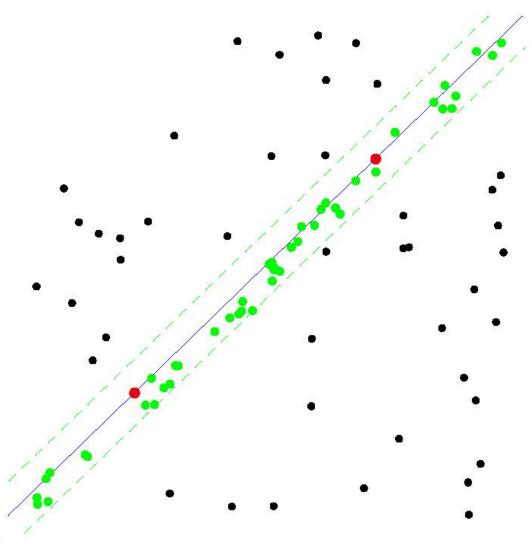
P(bad k times) = 
$$(1 - P(good))^k \le 1 - p$$

$$k \log (1 - P(\text{good})) \le \log(1 - p)$$

$$k \ge \log(1-p) / \log(1-P(\text{good}))$$

#### I/N[%]

| ш            |    | 15%                  | 20%                  | 30%                  | 40%                  | 50%                  | 70%                 |
|--------------|----|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| sample       | 2  | 132                  | 73                   | 32                   | 17                   | 10                   | 4                   |
|              | 4  | 5916                 | 1871                 | 368                  | 116                  | 46                   | 11                  |
| sai          | 7  | $1.75 \cdot 10^{6}$  | $2.34 \cdot 10^{5}$  | $1.37 \cdot 10^{4}$  | 1827                 | 382                  | 35                  |
| the          | 8  | $1.17\cdot 10^7$     | $1.17 \cdot 10^{6}$  | $4.57\cdot 10^4$     | 4570                 | 765                  | 50                  |
| f tł         | 12 | $2.31 \cdot 10^{10}$ | $7.31 \cdot 10^{8}$  | $5.64 \cdot 10^{6}$  | $1.79 \cdot 10^{5}$  | $1.23 \cdot 10^4$    | 215                 |
| of           | 18 | $2.08 \cdot 10^{15}$ | $1.14 \cdot 10^{13}$ | $7.73 \cdot 10^{9}$  | $4.36 \cdot 10^{7}$  | $7.85 \cdot 10^{5}$  | 1838                |
| Size         | 30 | $\infty$             | $\infty$             | $1.35 \cdot 10^{16}$ | $2.60 \cdot 10^{12}$ | $3.22 \cdot 10^{9}$  | $1.33 \cdot 10^{5}$ |
| $\mathbf{N}$ | 40 | $\infty$             | $\infty$             | $\infty$             | $2.70 \cdot 10^{16}$ | $3.29 \cdot 10^{12}$ | $4.71 \cdot 10^{6}$ |



$$k = \frac{\log(1-p)}{\log\left(1-\frac{I}{N}\frac{I-1}{N-1}\right)}$$

- *k* ... number of samples drawn
  - N ... number of data points
  - $I \dots$  time to compute a
    - single model
    - p ... confidence in the
      - solution (.95)

### RANSAC [Fischler, Bolles '81]

In:  $U = \{x_i\}$  set of data points, |U| = N

 $f(S) : S \to p$  function f computes model parameters p given a sample S from U

 $\rho(p, x)$  the cost function for a single data point x

**Out:** p<sup>\*</sup> p<sup>\*</sup>, parameters of the model maximizing the cost function

k := 0

Repeat until P{better solution exists} <  $\eta$  (a function of C<sup>\*</sup> and no. of steps k)

k := k + 1

#### I. Hypothesis

- (1) select randomly set  $S_k \subset U$ , sample size  $|S_k| = m$
- (2) compute parameters  $p_k = f(S_k)$
- II. Verification
- (3) compute cost  $C_k = \sum_{x \in U} \rho(p_k, x)$ (4) if  $C^* < C_k$  then  $C^* := C_k$ ,  $p^* := p_k$ end

### Advanced RANSAC

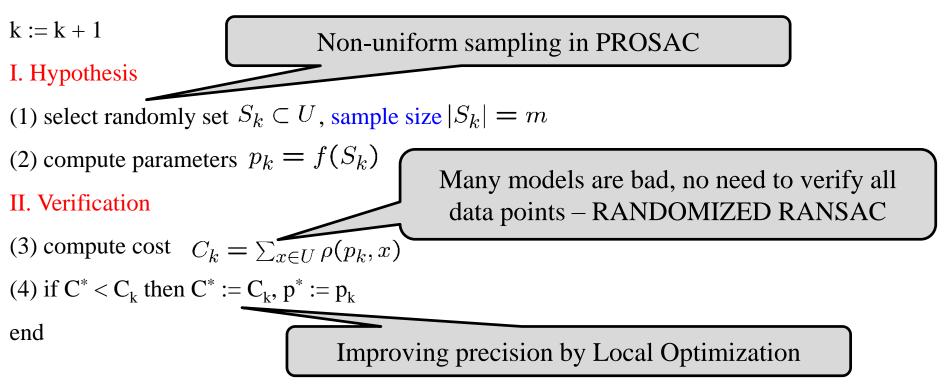
In:  $U = \{x_i\}$  set of data points, |U| = N

- $f(S): S \to p$  function f computes model parameters p given a sample S from U
- $\rho(p, x)$  the cost function for a single data point x

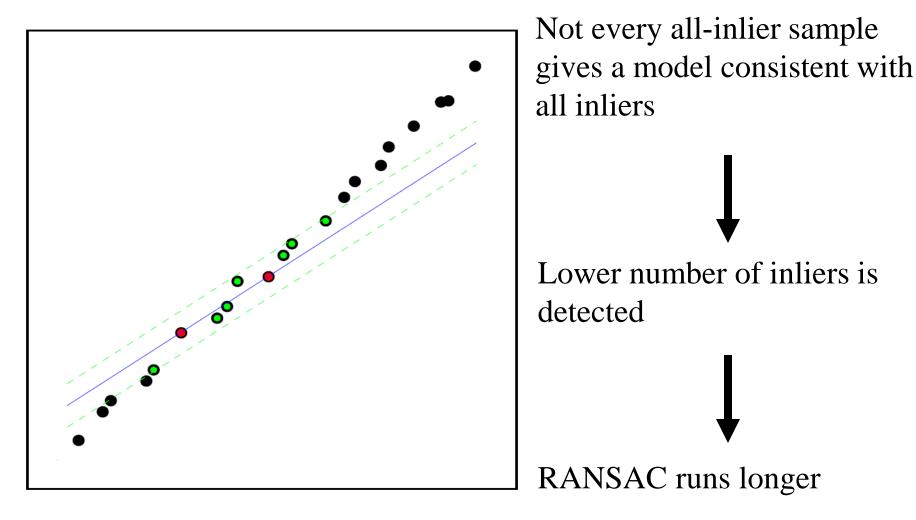
**Out:**  $p^*$   $p^*$ , parameters of the model maximizing the cost function

k := 0

Repeat until P{better solution exists} <  $\eta$  (a function of C<sup>\*</sup> and no. of steps k)



### **RANSAC** Makes an Invalid Assumption



### Solution: Local Optimisation Step

Repeat k times

- 1. Hypothesis generation
- 2. Model verification
  - 2b. If model best-so-far Execute (Local) Optimisation

#### **Inner RANSAC + Re-weighted least squares:**

- Samples are drawn from the set of data points consistent with the best-so-far hypothesis
- New models are verified on all data points
- Samples can contain more than minimal number of data points since consistent points include almost entirely inliers

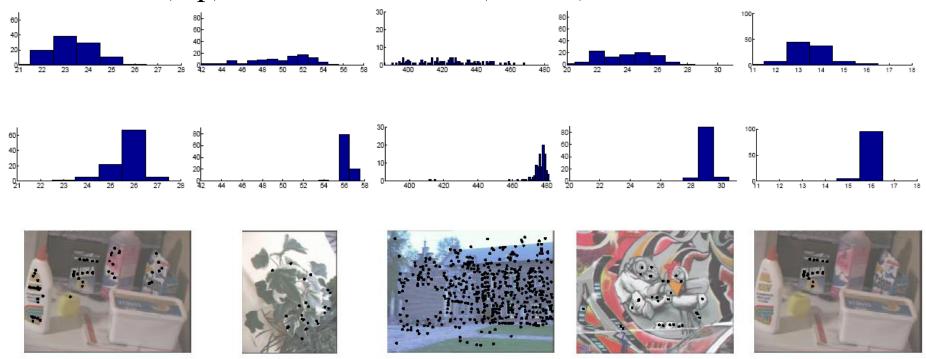
#### How often?

$$\sum_{l=1}^{k} P_l = \sum_{l=1}^{k} \frac{1}{l} \le \int_1^k \frac{1}{x} \, dx + 1 = \log k + 1$$

**Conclusion: the LO step 2b is executed rarely, does not influence running time significantly** 

### Validation: Two-view Geometry Estimation

Histograms of the number of inliers returned over 100 executions of RANSAC (top) and LO-RANSAC (bottom)



#### **Result**:

(i) variation of the number of inliers significantly reduced(ii) speed-up up to 3 times (for 7pt EG and 4pt homography est.)

### PROSAC – PROgressive SAmple Consensus

- Not all correspondences are created equally
- Some are better than others
- Sample from the best candidates first

$$1 2 3 4 5 \dots N-2 N-1 N$$

Sample from here

### **PROSAC** Samples

$$\cdots l - 1 l l + 1 l + 2 \cdots$$

Draw  $T_l$  samples from  $(1 \dots l)$ Draw  $T_{l+1}$  samples from  $(1 \dots l+1)$ 

Samples from  $(1 \dots l)$  that are not from  $(1 \dots l+1)$  contain



Draw  $T_{l+1}$  -  $T_l$  samples of size *m*-1 and add



### Conclusions

- RANSAC is a standard tool in computer vision
- it is a simple procedure
  hypothesize and verify loop
- handles large number of outliers
- a number of advanced strategies to
  - increase the stability
  - speed up
- Vanilla RANSAC never used in practice