RANSAC

Robust model estimation from data
contaminated by outliers

Ondiej Chum



Fitting a Line

Least squares fit
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» Select sample of m points
at random



RANSAC

» Select sample of m points at
random

» Calculate model
parameters that fit the data
In the sample
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RANSAC

» Select sample of m points at
random

» Calculate model parameters
that fit the data in the sample

 Calculate error function for
each data point

» Select data that support
current hypothesis
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RANSAC

» Select sample of m points at
random

» Calculate model parameters
that fit the data in the sample

 Calculate error function for
each data point

« Select data that support
current hypothesis

» Repeat sampling



How Many Samples?

On average
N ... number of points
I . number of inliers
m ... size of the sample

(I) m—1 7 —j

7 :

mean time before the success
E(k) =1/ P(good)



How Many Samples?
With confidence p

How large k7

... to hit at least one pair of points on the
line [ with probability larger than p (0.95)

Equivalently

... the probability of not hitting any pair
of pointsonlis < 1—p



How Many Samples?

With confidence p
N ... number of point
I . number of inliers
m ... size of the sample

(?{r) _ ?ﬁl I _J
(??r) j=0 N =1

P(bad) =1 — P(good)

P(good) =

P(bad k times) = (1 — P(good))¥



How Many Samples?

With confidence p

P(bad k times) = (1 -~ P(good))ks 1-p

k log (1 — P(good)) <log(1 —p)

k>log(1—p)/log (1 - P(good))



Size of the sample m

How Many Samples

| /' N [%]
15% 20% 30% 40% 50% 70%
2 132 73 32 17 10 4
4 5916 1871 368 116 46 11
7 | 1.75-10% | 2.34-10° | 1.37-10% 1827 382 35
8 | 1.17-107 | 1.17-10° | 4.57- 104 4570 765 50
1212311009 7.31-10% | 5.64-10% | 1.79-10° | 1.23.10% 215
18 | 2.08- 10 | 1.14- 1013 | 7.73-10° | 4.36-107 | 7.85-10° 1838
30 ~ 0 1.35-101 | 2.60-1012 | 3.22.107 | 1.33-10°
40 x O ~ 2.70 - 101 | 3.29. 102 | 4.71 - 10°




RANSAC

Lt ///'

log(1-p)

log (1- %)

k =

K ... number of samples
drawn

N ... number of data points

| ... time to compute a
single model

P ... confidence in the
solution (.95)



RANSAC [Fischler, Bolles ’81]

In: U = {x} set of data points, |U| =N
f(S):S—=p function f computes model parameters p given a sample S from U
p(p, ) the cost function for a single data point x

Out: p* p*, parameters of the model maximizing the cost function

k:=0

Repeat until P{better solution exists} < n (a function of C* and no. of steps k)
ki=k+1

|. Hypothesis

(1) select randomly set S C U, sample size |Sy,| = m

(2) compute parameters Pr = f(Sk)

I1. Verification

(3) compute cost ¢, = 3, 7 p(pp, )

(4)ifC*<C,thenC" :=C,, p" :=p,

end



Advanced RANSAC

In: U = {x} set of data points, |U| =N
f(S):S—=p function f computes model parameters p given a sample S from U
p(p, ) the cost function for a single data point x

Out: p* p*, parameters of the model maximizing the cost function

k:=0

Repeat until P{better solution exists} < n (a function of C* and no. of steps k)

ki=k+1 Non-uniform sampling in PROSAC ]
|. Hypothesis

(1) select randomly set S C U, sample size |Si| = m

(2) compute parameters Pr = f(Sk) J

o Many models are bad, no need to verify all
I Verification data points - RANDOMIZED RANSAC

(3) compute cost ¢y, = 37 ci; p(pg, )
(4) if C* < C, then C*:=C,, p* := p,

end
i Improving precision by Local Optimization ]




RANSAC Makes an Invalid Assumption

Not every all-inlier sample
e | gives a model consistent with

- all inliers
o
@ /,,,/"/
o /,,/"/
o Lower number of inliers is
& detected
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RANSAC runs longer




Solution: Local Optimisation Step

Repeat k times
1. Hypothesis generation
2. Model verification
2b. If model best-so-far Execute (Local) Optimisation

Inner RANSAC + Re-weighted least squares:

- Samples are drawn from the set of data points consistent with
the best-so-far hypothesis
- New models are verified on all data points
- Samples can contain more than minimal number of data points
since consistent points include almost entirely inliers

k

k k
1 1
How often? E:B=§:7§/ Sdr+1l=logk+1
=1 =1 1

Conclusion: the LO step 2b is executed rarely, does not influence running time
significantly



Validation: Two-view Geometry Estimation

Histograms of the number of inliers returned over 100 executions of
RANSAC (top) and LO- RANSAC (bottom)

Result:
(i) variation of the number of inliers significantly reduced
(i1) speed-up up to 3 times (for 7pt EG and 4pt homography est.)



PROSAC — PROgressive SAmple Consensus

 Not all correspondences are created equally
« Some are better than others
« Sample from the best candidates first

Sample from here




PROSAC Samples

Draw T, samples from (1 ... |)
Draw T,,, samples from (1 ... [+1)

Samples from (1 ... |) that are not from (1 ... [+1) contain ‘

Draw T,,, - T, samples of size m-1 and add ‘



Conclusions

RANSAC is a standard tool in computer
vision

It 1s a simple procedure

— hypothesize and verify loop

handles large number of outliers

a number of advanced strategies to

— Increase the stability

— speed up

Vanilla RANSAC never used In practice



