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Feature extraction: Corners

9300 Harris Corners Pkwy, Charlotte, NC



Finding Corners

• Key property: in the region around a corner, image 

gradient has two or more dominant directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference: pages 147--151.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Corner Detection: Basic Idea

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

E(u,v) = [I(x+u, y+ v)- I(x, y)]2

(x,y)ÎW

å



Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)

Change in appearance of window W for the shift [u,v]:

E(u,v) = [I(x+u, y+ v)- I(x, y)]2

(x,y)ÎW

å



Corner Detection: Mathematics

We want to find out how this function behaves for small 
shifts

E(u, v)

Change in appearance of window W for the shift [u,v]:

E(u,v) = [I(x+u, y+ v)- I(x, y)]2

(x,y)ÎW

å



Corner Detection: Mathematics

• First-order Taylor approximation for small motions [u, v]:

• Let’s plug this into E(u,v):

vIuIyxIvyuxI yx  ),(),(

E(u,v) = [I(x +u, y+ v)- I(x, y)]2

(x,y)ÎW

å

» [I(x, y)+ Ixu+ Iyv- I(x, y)]2

(x,y)ÎW

å

= [Ixu+ Iyv]
2

(x,y)ÎW

å = Ix
2u2 + 2IxIyuv+ Iy

2v2

(x,y)ÎW

å

***WAIT! Why not just maximize E(u,v) directly?



Corner Detection: Mathematics

The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)



• The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

• Specifically, in which directions 
does it have the smallest/greatest
change?

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

const][ 
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R

direction of the 
slowest change

direction of the 
fastest change

(max)
-1/2

(min)
-1/2

const][ 
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Diagonalization of M:



Consider the axis-aligned case (gradients are 
either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so look 
for locations where both are large.

Interpreting the second moment matrix
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Visualization of second moment matrices



Visualization of second moment matrices



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues of M:



Corner response function

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

2

2121

2 )()(trace)det(   MMR

α: constant (0.04 to 0.06)



The Harris corner detector

1. Compute partial derivatives at each pixel

2. Compute second moment matrix M in a Gaussian 

window around each pixel: 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf


The Harris corner detector

1. Compute partial derivatives at each pixel

2. Compute second moment matrix M in a Gaussian 

window around each pixel 

3. Compute corner response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



The Harris corner detector

1. Compute partial derivatives at each pixel

2. Compute second moment matrix M in a Gaussian 

window around each pixel 

3. Compute corner response function R

4. Threshold R

5. Find local maxima of response function (nonmaximum

suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Steps

Find points with large corner response: R > threshold



Harris Detector: Steps

Take only the points of local maxima of R



Harris Detector: Steps



Robustness of corner features

• What happens to corner features when the image undergoes 

geometric or photometric transformations?



Affine intensity change

• Only derivatives are used => 
invariance to intensity shift I  I + b

• Intensity scaling: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b



Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation



Image rotation

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation



Rotation Invariance of Harris Detector

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Scaling

All points will be 
classified as 
edges

Corner

Corner location is not covariant to scaling!



Harris Detector: Scale Change

 Quality of Harris detector for different scale changes

Repeatability rate:

# correspondences
# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Scale Invariant Detection

 Consider regions (e.g. circles) of different 

sizes around a point

 Regions of corresponding sizes will look the 

same in both images



Scale Invariant Detection

 The problem: how do we choose 

corresponding circles independently in each 

image?



What is scale space

36

 Progression of Gaussian blurs

 Intuition: Simulate a point spread function applied to larger parts 

of the scene

 Theory: Scale space axioms



Scale Invariant Detection

 Solution:

• Design a function on the region (circle), 

which is “scale covariant” (the same for 

corresponding regions, even if they are at 

different scales)

scale = 1/2

– For a point in one image, we can 

consider it as a function of region size 

(circle radius) 

f

region size

Image 1 f

region size

Image 2



Scale Invariant Detection

 Common approach:

scale = 1/2

f

region size

Image 1 f

region size

Image 2

• Take a local maximum of some function

• Observation: region size, for which the 

maximum is achieved, should be 

invariant to image scale.

s1 s2

Important: this scale invariant region size is found 

in each image independently! 



Scale Invariant Detection

 A “good” function for scale detection:

has one stable sharp peak

f

region size

bad

f

region size

Good, but not unique

f

region size

Good !

• For usual images: a good function would be a 

one which responds to contrast (sharp local 

intensity change)

?



Keypoint detection with scale selection

• We want to extract keypoints with characteristic scale 

that is covariant with the image transformation



Basic idea

• Convolve the image with a “blob filter” at multiple 

scales and look for extrema of filter response in the 

resulting scale space

T. Lindeberg. Feature detection with automatic scale selection.
IJCV 30(2), pp 77-116, 1998. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Blob detection

 Find maxima and minima of blob filter response in 

space and scale

* =

maxima

minima

Source: N. Snavely



Blob filter

 Laplacian of Gaussian: Circularly symmetric operator for blob 

detection in 2D

2

2

2

2
2

y

g

x

g
g













Recall: Edge detection

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative



Edge detection, Take 2

g
dx

d
f

2

2



f

g
dx

d
2

2

Edge

Second derivative
of Gaussian 
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz



From edges to blobs

• Edge = ripple

• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum



Scale selection

• We want to find the characteristic scale of the blob by 

convolving it with Laplacians at several scales and 

looking for the maximum response

• However, Laplacian response decays as scale 

increases:

increasing σoriginal signal
(radius=8)



Scale normalization

• The response of a derivative of Gaussian filter to a perfect 

step edge decreases as σ increases

 2

1



Scale normalization

• The response of a derivative of Gaussian filter to a perfect 

step edge decreases as σ increases

• To keep response the same (scale-invariant), must multiply 

Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, so it must be 

multiplied by σ2



Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum



Blob detection in 2D

• Scale-normalized Laplacian of Gaussian:




















2

2

2

2
22

norm
y

g

x

g
g 



Blob detection in 2D

• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

• Laplacian measures curvature, think of one dimension

• Gives how much the pixels differ from it’s average 

value

r

image Laplacian



Blob detection in 2D

• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

• To get maximum response, the zeros of the Laplacian 

have to be aligned with the circle

• The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at 

r

image

222 2/)(222 )2(  yxeyx 

.2/r

circle

Laplacian

0



Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several 

scales



Scale-space blob detector: Example



Scale-space blob detector: Example



Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several 

scales

2. Find maxima of squared Laplacian response in scale-space



Scale-space blob detector: Example



Eliminating edge responses

• Laplacian has strong response along edge



Eliminating edge responses

• Laplacian has strong response along edge

• Solution: filter based on Harris response function over 

neighboroods containing the “blobs”



• Approximating the Laplacian with a difference of Gaussians:

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Efficient implementation



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Scale Invariant Detection

 Functions for determining scale

2 2

21 2

2
( , , )

x y

G x y e 









 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

Kernel Imagef  

Kernels:

where Gaussian

(Laplacian)

(Difference of Gaussians)



Scale Invariant Detectors

Harris-Laplacian1

Find local maximum of:
• Harris corner detector in space 

(image coordinates)

• Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004

scale

x

y

 Harris 


L
a
p
la

ci
a
n
 

Laplacian-Laplacian = 
“SIFT” (Lowe)2

Find local maximum of:
• Difference of Gaussians in 

space and scale

scale

x

y

 DoG 


D

o
G

 

Other options: Hessian, …
Harris does not work well for scale selection



Scale Invariant Detectors

 Experimental evaluation of detectors 

w.r.t. scale change

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Repeatability rate:

# correspondences
# possible correspondences



What about 3D rotations?



What about 3D rotations?

• Affine transformation approximates viewpoint changes for 

roughly planar objects and roughly orthographic cameras



Affine Invariant Detection

• Above we considered:

Similarity transform (rotation + uniform scale)

• Now we go on to:

Affine transform (rotation + non-uniform 

scale)



Affine Invariant Detection

 Take a local intensity extremum as initial point

 Go along every ray starting from this point and stop 

when extremum of function  f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.

0

1
0

( )
( )

( )

t

o

t

I t I
f t

I t I dt






f

points along the ray

• We will obtain approximately corresponding regions

Remark: we search for 

scale in every direction



Affine Invariant Detection

 The regions found may not exactly correspond, so we 

approximate them with ellipses

• Geometric Moments: 

2

( , )p q

pqm x y f x y dxdy  Fact: moments mpq uniquely 

determine the function f

Taking  f to be the characteristic function of a 

region (1 inside, 0 outside), moments of orders up 

to 2 allow to approximate the region by an ellipse

This ellipse will have the same moments 

of orders up to 2 as the original region



Affine Invariant Detection

• Covariance matrix of region points defines an ellipse:

Ellipses, computed for corresponding 

regions, also correspond!



Affine Invariant Detection

 Algorithm summary (detection of affine invariant region):

• Start from a local intensity extremum point

• Go in every direction until the point of extremum of 
some function  f

• Curve connecting the points is the region boundary

• Compute geometric moments of orders up to 2 for this 
region

• Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.



Harris/Hessian Affine Detector

1. Detect initial region with Harris or Hessian detector and 

select the scale

2. Estimate the shape with the second moment matrix

3. Normalize the affine region to the circular one

4. Go to step 2 if the eigenvalues of the second moment 

matrix for the new point are not equal



: 

The Maximally Stable Extremal Regions

74

 Consecutive image thresholding by all thresholds

 Maintain list of Connected Components

 Regions = Connected Components with stable area (or 
some other property) over multiple thresholds selected

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of CMP, 2001.

video

../teaching/iccv07-recognition-turorial/msers_anim3D.mpg


The Maximally Stable Extremal Regions

75

video

../teaching/iccv07-recognition-turorial/msers_anim_small.mpg


MSER Stability

76
Matas, Chum, Urban, Pajdla: “Robust wide baseline stereo from maximally stable extremal regions”. BMVC2002

Properties:
Covariant with continuous deformations of images

Invariant to affine transformation of pixel intensities

Enumerated in O(n log log n), real-time computation

MSER regions (in green). The regions ‘follow’ the object (video1, video2).

../teaching/iccv07-recognition-turorial/mserRotace1.mpg
../teaching/iccv07-recognition-turorial/mserRotace2.mpg
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Thank you for your attention.
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