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Definition
An image (grayscale) is a function, I , from R2 to R such that
I (x , y) gives the intensity at position (x , y).

Definition
A digital image (grayscale) is a sampled and quantized version of
I . The discrete values are indexed as I [x , y ].



Why do we need image derivatives?

Image derivatives will be used to construct discrete operators that
detect salient differential geometry in the scene.

Some desiderata

sparse representation of the image

repeatability

salient features

invariance to photometric and geometric transforms of the
image

Examples include

Harris corners

Hessian Affine (blobs)

Maximally Stable Extremal Regions



Finite forward difference

Taylor series expansion

I (x+h) = I (x)+hIx(x)+
1

2
h2Ix(xx)+

1

3!
h3Ixxx(x)+O(h4) =⇒

I (x + h)− I (x)

h
= Ix(x) +O(h) =⇒

Ix [x ] ≈ I [x + h]− I [x ]

h

Template

-1 1



Finite backward difference

Taylor series expansion

I (x−h) = I (x)−hIx(x)+
1

2
h2Ixx(x)− 1

3!
h3Ixxx(x)+O(h4) =⇒

I (x)− I (x − h)

h
= Ix(x) +O(h) =⇒

Ix [x ] ≈ I [x ]− I [x − h]

h

Template

-1 1



Central difference

Taylor series expansion

I (x + h) = I (x) + hIx(x) +
1

2
h2Ixx(x) +

1

3!
h3Ixxx(x) +O(h4)

I (x − h) = I (x)− hIx(x) +
1

2
h2Ixx(x)− 1

3!
h3Ixxx(x) +O(h4) =⇒

I (x + h)− I (x − h) = I (x) + 2hIx(x) +
2

3!
h3Ixxx(x) =⇒

I (x + h)− I (x − h)

2h
= Ix(x) +O(h2) =⇒

Ix [x ] ≈ I [x + h]− I [x − h]

2h

Template
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2 0 1
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Convolution in spatial domain

(I ∗ f )[x , y ] =
∑k

i=−k

∑k
j=−k I [i , j ] ∗ f [x − i ][y − j ]

convolution is equivalent to
flipping the filter in both
dimensions and correlating

same result for symmetric
kernels

many libraries conflate
convolution and correlation

so why NOT just use
cross-correlation?



Applying derivative to an image

row i forward difference

f o r ( j = j s t a r t ; j <= j e n d ; j ++)
h [ j ]= I [ j +1]− I [ j ] ;

let f [0] = 1 and f [1] = −1, then

row i Forward difference with mask f [0] = 1 and f [1] = −1.

f o r ( j = j s t a r t ; j <= j e n d ; j ++)
h [ j ]= f [ 0 ] ∗ I [ j +1]+ f [ 1 ] ∗ I [ j ] ;

row i with arbitrary derivative defined by mask f , e.g,
f [−1] = 1

2 , f [0] = 0, f [1] = −1
2

f o r ( j = j s t a r t ; j <= j e n d ; j ++)
{

h [ j ] = 0 ;
f o r ( b = b s t a r t ; b <= bend ; b++)

h [ j ] + = I [ b ]∗ f [ j−b ] ;
}



Image derivatives are convolutions

row i with arbitrary derivative defined by mask f .

f o r ( i = i s t a r t ; i <= i e n d ; i ++)
f o r ( j = j s t a r t ; j <= j e n d ; j ++)
{

h [ i ] [ j ] = 0 ;
f o r ( a = a s t a r t ; a <= aend ; a++)

f o r ( b = b s t a r t ; b <= bend ; b++)
h [ i ] [ j ] + = I [ a ] [ b ]∗ f [ i−a ] [ j−b ] ;

}

Loops over a, b is discrete convolution at i , j .

h[i , j ] := (I ∗ f )[i , j ] ≡
∑
a

∑
b

I [a, b]f [i − a, j − b]



Image Gradient

I
∂I
∂x

∂I
∂y

‖∇I‖ =
√

( ∂I∂x )2 + ( ∂I∂y )2



Artificially added white noise

∼ N (µ = 0, σ = 16)



Effect of white noise image derivatives

Noisy image

I [x , y = j ]

d
dx I [x , y = j ]



Why do we use the Gaussian as a low-pass filter?

white noise exists at all frequencies

corners and edges are represented by high frequencies

need to remove noise but maintain details

Fourier transform of Gaussian is Gaussian: Gaussian does not
have a sharp cutoff at some pass band frequency and does not
oscillate.

weighted averaging is spatial blurring is low-pass filtering.

we will blur in the spatial domain with Gaussian

σ = 0 σ = 1 σ = 5 σ = 10 σ = 30



Box-filter vs Gaussian

original

box

Gaussian

Box-filter garbles high-frequency signal while removing noise.
(not doing good things in the frequency domain)



Gaussian kernel

gσ[x , y ] = 1
2πσ2 e

−(x2+y2)

2σ2

σ = 1 σ = 5 σ = 10 σ = 30



Gaussian smoothing

f g

I ∗ g d
dx (I ∗ g)



Separability of Gaussian kernels

Definition
A 2D kernel g is called separable if it can be broken down into the
convolution of two kernels: g = g (1) ∗ g (2).

gσ[x , y ] =
1

2πσ2
e−

x2+y2

2σ2

=
1√
2πσ

e−
x2

2σ2 · 1√
2πσ

e−
y2

2σ2

= g (1)
σ [x ] · g (2)

σ [y ]

and

(I ∗ gσ)[x , y ] =
∑
i

∑
j

gσ[x − i , x − j ]I [i , j ] = . . .

∑
i

∑
j

g (1)
σ [x−i ]g (2)

σ [x−j ]I [i , j ] =
∑
i

g (1)
σ [x−i ]

∑
j

g (2)
σ [x−j ]I [i , j ] = . . .

(g (1)
σ ∗ (g (2)

σ ∗ I ))[x , y ]



Complexity of convolution in spatial domain

What are the number of operations and complexity of
kxk-dimension kernel on and mxn-dimension image for a

non-separable kernel: k2 ·m · n operations, complexity O(k2)

separable kernel: 2 · k ·m · n operations, complexity O(k)

It pays to take advantage of separability!



Important Gaussian derivative properties

Image differentiation d
dx is a convolution on image I .

Smoothing by Gaussian kernel g is a convolution on image I .

2D Gaussian kernel is separable g = g (1) ∗ g (2).

Convolution is

commutative I ∗ g = g ∗ f
associative (I ∗ g) ∗ h = I ∗ (g ∗ h)

So d
dx (I ∗ g) = I ∗ d

dx g = (I ∗ ( d
dx g

(1))) ∗ g (2)

g d
dx g



First Derivatives of a Gaussian

d
dx g

d
dy g



Gaussian derivatives like a boss.

If you want to level up, then you can exploit a recurrence relation
of Hermite polynomials to algorithimically construct Gaussian

derivatives of any order without convolution or symbolic
differentiation.


