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• D1 Starting toolbox for statistical recognition 

• D2 Structured prediction 
• Hidden Markov model, Markov random field (MRF) 
• Inference problems, EM with MAR 
• Support Vector Machine 

• D3 Learning for structured prediction 
• Structured output SVM, advanced examples 
• Cutting Plane methods
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Classification

{0, 1}

…

{1,..K}

• SVM era

• Deep NN era
• Learn some feature vector
• Apply SVM



5

Structured Prediction

{space of text sentences}

• Optical Structure Recognition • Image Segmentation

• Text Recognition

• Facial Landmarks Detection• Body Parts Segmentation



Markov Models



• Statistical models over large (structured) state spaces 
• Conditional independences, p.d.f. factorization 

• Hidden Markov model (chain) 
• Connection: recurrent NNs 

• Markov random field, conditional random field 
• Connection: CNN, deep Bolzman machine
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The Modeling Problem

• Consider a collection of random variables describing hidden state

x1, x2, . . . xn, xi 2 D

• Wish to have a statistical model:

p(x) = p(x1, x2, . . . xn)

• But how to represent complicated function of many variables?

• Trivial observation for independent variables:

• The distribution factors:

p(x) = p(x1)p(x2) . . . p(xn)

• it is easy to evaluate maximize or integrate

• Something in between?



• Conditional Independence 
• Example: smoke, fire, alarm 
• all 3 correlated, but 
• smoke => fire and alarm are independent 

• Conveniently represented in a graph diagram
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Conditional Independence

smoke

fire alarm

No edge = conditionally independent

• Factorization:

x1

x2 x3

p(x1, x2, x3) = p(x2 | x1)p(x3|x1)p(x1)

p(x2, x3|x1) = p(x2 | x1)p(x3|x1)
p(x2|x1, x3) = p(x2 | x1)

• A directed graphical model (Bayes Network)
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In Images
• A region is independent of the rest given some neighborhood
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Random Field
• Collection of random variables

x1, x2, . . . xn, x

i

2 D

Definition

p : D

n ! R is a random field if p(x) > 0 8x ,
P

x

p(x) = 1.

• Non-negativity is important for existence of conditional probabilities and

other good reasons. Practically not a limitation.

Definition

p is a Markov random field if it satisfies one or more conditional independence

(Markov) properties.

(Book: Lauritezen S.L.,“Graphical Models”, 1996)



• Undirected Graphical Model

• Graph G = (V ,E )
• Set of nodes V : random variables xi , i 2 V

• Set of edges E

• Local Markov Property w.r.t. G :

• Given neighbors of xi , it is independent of the rest:

p(xi | xV ı) = p(xi | xN(i)), 8i 2 V

• Pairwise Markov Property w.r.t. G :

• Absent edge (i , j) in G i↵ xi and xj are conditionally independent

given the rest of variables.

Theorem (Lauritzen 96)

Local and Pairwise Markov Properties are equivalent.

Definition

MRF w.r.t. graph G is a random field satisfying Markov property w.r.t. G
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Undirected Graphical Model

i N(i)



• Only factorization matters for representation tractability and inference

Definition

p is a Gibbs Random field if it factors as p(x) =
Q

c⇢S fc(xc),

• A generalization, S ⇢ 2V

• Here we do not need c to be a clique in some graph
13

MRF factorization
• Conditional independencies help to structure and simplify the distribution

Theorem (Hammersley-Cli↵ord,1971)

MRF p w.r.t. graph G factors over cliques of G: p(x) =
Q

c2C fc(xc),

• C is the set of cliques – maximal fully connected subgraphs



14

Maximum a posteriori

• Given the model p(x) =

Q
c2S

f

c

(x

c

) find the most probable state:

max

x

p(x)

• Joint maximization in all variables

• Take negative logarithm:

min

x

X

c2S

� log f

c

(x

c

) = min

x

E (x)

• Partially separable minimization problem (Energy minimization)

• Converted to optimization domain (ILP, maximum cut, submodular

function minimization, relaxations)

• Gibbs distribution: p(x) = exp(�E (x)) – physics origins
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Conditional Random Field

hidden variables x

observed variables y

Discriminative, no model of p(y)

• xi , i 2 V - hidden random variables (segmentation)

• yj , j 2 V

0
- observed random variables (Image)

Definition (La↵erty et al. 01)

p(x | y) is a conditional random field if it satisfies Markov properties w.r.t. x

given y .

MRF p(x,y) CRF p(x|y)

Generative: p(y) =
P

x

p(x , y)

Recognition is the same: argmin
x

p(x , y) = argmin
x

p(x | y)

can be learned unsupervised more flexible for recognition



Energy Minimization



• NP-hard (includes MAX-CUT, vertex packing, etc.) 
• exp-APX-complete (approximation-preserving reduction from WSAT) 
• Two large groups of methods: 

• minimum cut (graph cuts) 
• LP relaxation / message passing 

• There are much more
17

Energy Minimization

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)

V - set of nodes

E - set of edges

(V, E) - graph

x = (xi | i 2 V) - labeling

2/21
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Discrete Optimization - MRF Model

Discrete label x
i

for each pixel i , Energy: min
x

P
i

f

i

(x
i

) +
P
ij

f

ij

(x
i

, x
j

)

x2x1

fi(xi)

fij(xi, xj)

For a chain or a tree can be solved using dynamic programming.

A. Shekhovtsov Parallel Dual Block Optimization for Energy Minimization
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Introduction The Problem Algorithm References

Energy Minimization

Example: Potts Model for Object Class Segmentation

V - set of pixels; E ⇢ V ⇥ V neighboring pixels;

Xs = {1, . . .K} – class label;

Ef (x) =
P

s2V fs(xs) +
P

st2E �st [[xs 6= xt ]].

Image Ground Truth

(MSRC object class segmentation)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency

Example: segmentation



19

Minimum Cut

• Problem history: 30+ years 
• Active research for better algorithms: 

• theoretical (Orlin’12: O(mn) algorithm), parallel algorithms 
• practical, esp. in computer vision

• Minimum s-t cut problem
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Minimum Cut
• Let x

i

2 {0, 1}
• Energy minimization: min

x

P
i2V f

i

(x

i

) +

P
ij2E fij(xi , xj)

• Expand as polynomial:

f

i

(x

i

) = f

i

(1)x

i

+ f

i

(0)(1� x

i

) = c0 + c

i

x

i

;

f

ij

(x

i

, x
j

) = . . . = c

0
0 + c

0
i

x

i

+ c

00
j

x

j

+ c

ij

x

i

(1� x

j

).

• Minimum cut: min

S⇢V

P
ij2(S,V\S) cij2 Background on Energy Minimization

u v

fu(1)
fuv(1, 1)

fu(0)

fv(1)

fv(0)
fuv(0, 0)

fuv(1, 0) fuv(0, 1)
  

 u v

cu cv
cuv

 

u v

c1u c1 v

cu 0 cv 0

1 - source

0 - sink

cuv
cvu

(a) (b) (c)

Figure 2 Equivalent mincut representation for energy minimization with binary variables. (a)
Energy terms for pixels u, v and pair uv œ E . (b) Equivalent transformation of the energy
allowing to rewrite it in the form (38). (c) Cut-cost representation of the energy function.
The cut shown in red is (A, V\A) with A = {1, u}. It corresponds to the labeling xuv = (1, 0)
and has the cost cu0

+ cuv + c
1v equivalent (up to a constant) to the respective energy cost.

Expression (36) is a quadratic polynomial in binary variables x. Functions of the form
BV ‘æ R are known as pseudo-Boolean and their minimization (or maximization) are
the subject of pseudo-Boolean optimization (BorosHammer02 ). In this work, we will
discuss several methods which are based on the results developed in pseudo-Boolean
optimization or are generalizing them in a certain way.

2.3.1 Roof Dual (QPBO)

In the case of two labels, the necessary condition of optimality of the LP relaxation,
described in §2.2.5 is also su�cient.

Theorem 6. Let fÏ be an arc-consistent equivalent of energy f with two labels. Then
there is an optimal relaxed labeling with components in {0, 1

2 , 1} (half-integral) satisfy-
ing complementary slackness.

This result was observed independently by Hammer-84-roof-duality; Schlesinger00;
Kolmogorov-05-opt. See also (Werner-PAMI07 ).

In pseudo-Boolean optimization it was shown that several approaches, including the
dual in the form (20), lead to the same lower bound, called the roof dual (Hammer-84-roof-duality;
BorosHammer02 ). This dual problem can be converted to maxflow on a specially
constructed graph with a double number of vertices (Boros:TR91-maxflow ) and
thus can be solved by e�cient maxflow algorithms. It was found to be a powerful
method for quadratic pseudo-Boolean optimization and was also enhanced by probing

(Boros:TR06-probe; Rother:CVPR07 ). Kolmogorov-Rother-07-QBPO-pami
and Rother:CVPR07 proposed a review, an e�cient implementations and further
improvements. After them, Quadratic Pseudo-Boolean Optimization, abbreviated as
QPBO(-P), refers to this particular e�cient method (resp. with probing). Kolmogorov10-bisub
gives an alternative interpretation of this method via a submodular lower bound.

For our purposes, we will assume that QPBO finds the arc-consistent equivalent fÏ.
Let us introduce a function QPBO(f) = {Os | s œ V}, where Os = argmini fÏ

s (i). It will
be proven in §3.2 that any minimizer x of Ef satisfies xs œ Os for all s œ V.

For multi-label problems, the QPBO method can be used to fuse two given label-
ings (Lempitsky-09-fusion ), restricting thus the search space to a binary choice in
every pixel. In §2.7, we review QPBO fusion in the context of the expansion-move
algorithm.
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• Solvable in polynomial time if c_uv >=0
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Applications of min-cut
• Exemplar applications
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Optimized Crossover

x

y

x

y

Current best solution

Proposal solution

Crossover (fusion problem)

Local Search in some combinatorial locality
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Expansion Move



• Input
• Two images from a calibrated camera pair
• Rectified: epipolar lines correspond to 

image rows

24

Example: Stereo Reconstruction

Input Pair

Disparity 
Map (GT)
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• Input
• Two images from a calibrated camera pair
• Rectified: epipolar lines correspond to 

image rows

• Problem
• For each pixel in the left image find the 

corresponding pixel in the right image

• Output

24
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• Input
• Two images from a calibrated camera pair
• Rectified: epipolar lines correspond to 

image rows

• Problem
• For each pixel in the left image find the 

corresponding pixel in the right image

• Output
• Dense depth (disparity) map

24

Example: Stereo Reconstruction

Input Pair

Disparity 
Map (GT)
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Example: Scan-line Stereo

i - pixel

x = (xi | i 2 V) - labeling

xi - chosen disparity label

fi(xi) - matching cost

fij(xi, xj) - smoothness costi j

xi
xj

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)
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Example: Scan-line Stereo

i - pixel

x = (xi | i 2 V) - labeling

xi - chosen disparity label

fi(xi) - matching cost

fij(xi, xj) - smoothness costi j

xi
xj

min
x

X

i2V
f

i

(x
i

) +
X

ij2E
f

ij

(x
i

, x

j

)

• Trellis graph

• Energy minimization



26

Hidden Markov Model

hidden variables x

observed variables y

p(x , y) = p(x1)

nY

i=2

p(x

i

| x
i�1)

nY

i=1

p(y

i

| x
i

)

• Conditionally independent model: given x

i

, y

i

is independent of everything

else.

• Recognition (MAP):

argmax

x

p(x , y) = argmin

x

X

i

f

i

(x

i

) +

nX

i=2

f

i�1,i (xi�1, xi )

fi (xi ) = � log p(yi | xi )



• Problem:

min

x

X

i2V
f

i

(x

i

) +

X

ij2E
f

ij

(x

i

, x
j

)

• Use distributivity:

min(a+ c , b + c) = min(a, b) + c

min

x

n

✓
· · ·+min

x2

⇣
f2,3(x2, x3) + f2(x2) + min

x1

�
f1,2(x1, x2) + f1(x1)

�⌘◆

• Recurrent update:

'
j

(x

j

) = min

x

i

�
f

ij

(x

i

, x
j

) + f

i

(x

i

) + '
i

(x

i

)

�

• Shortest path from the left

• Core of all message passing algorithms

27

Viterbi Algorithm

i j

'j(xj)
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Distance Transforms

O(nL2
) - naive approach, n variables, L labels

O(nL) - e�cient sequential algorithms

O(n logL) - e�cient parallel algorithms, using L processors

'

j

(x
j

) = min
xi

('
i

(x
i

) + f

i

(x
i

) + f

ij

(x
i

, x

j

))

fij(xi, xj) = wij⇢(xi � xj)

[Hirata’96, Meijster’02] [Felzenszwalb&H.’06]

[Goodrich’86, Chen’02]

+

• Recurrent update (message passing):

• Lower envelope (distance transform)

fij(xi , xj) + f

0
i (xi )

xj

i

• Extends to trees
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State-of-the-Art Heuristics for Stereo

(a) (b)

p

(c) (d)
Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of

VISAPP 2008 - International Conference on Computer Vision Theory and Applications
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disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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an energy function that operates on the tree structure
is determined via DP. We then look up the disparity
that lies on this energy minimum in the root node. Fi-
nally, this disparity is assigned to the image point for
which we performed the disparity computation.
In comparison to (Hirschmüller, 2005), our algo-

rithm assigns disparities based on the exact solution
of a clearly defined optimization problem. This might
represent a more “meaningful” result than selecting
the minimum of summed-up path costs. More impor-
tantly, we use tree structures that incorporate all pixels
of the reference image. A pixel’s disparity is there-
fore influenced by all other pixels and not just by a
subset thereof. This is what (Veksler, 2005) refers to
as “truly global”. Practically spoken, our algorithm
does not show the problem of missing image features
that help to disambiguate a pixel’s disparity, which is
specifically important in less textured image regions.
In the context of (Veksler, 2005), the most distinct

difference is that we do not apply a single tree to com-
pute the disparities of all pixels at once, but design
more flexible trees that vary their grid structures with
the spatial position of the pixel under consideration.
Obviously, we also share the disadvantage of losing
a large number of edges by approximating the four-
connected grid via a tree. However, as will be shown
in this section, we address this problem by using two
complementary tree structures, each of which incor-
porating a complementary set of edges.
The remainder of this section is organized as fol-

lows. We start by defining our energy function (sec-
tion 2.1). We then present the tree structures applied
in our approach (section 2.2). DP on a tree is reviewed
in section 2.3. Efficient optimization of the energy
function on our tree structures is discussed in section
2.4. Section 2.5 shows how our algorithm combines
two different types of trees. Finally, occlusion han-
dling is addressed in section 2.6.

2.1 Energy Function

Let I be the set of all pixels in the reference frame
and D denote the set of allowed disparity labels. We
formulate the stereo matching task as finding a dis-
parity solution D that maps each pixel p ∈ I to a dis-
parity dp ∈ D . The goodness of a disparity map D is
evaluated by an energy functional, which is subject to
minimization. We define the energy function by

E(D) = ∑
p∈I

m(p,dp)+ ∑
(p,q)∈N

s(dp,dq). (2)

Here, the data term m(p,dp) computes the pixel dis-
similarity of p being assigned to dp. We implement
this function using the sampling-insensitive measure-

p p

(a) (b)
Figure 2: Tree-based approximations of the four-connected
grid applied in this approach. Two trees are constructed for
each pixel p of the reference frame. (a) Horizontal Tree. (b)
Vertical Tree.

ment of (Birchfield and Tomasi, 1998) on RGB val-
ues. The smoothness function applied on two pixels
p and q that are neighbours according to a predefined
set N is defined by

s(dp,dq) =

⎧

⎨

⎩

0 : dp = dq
P1 : |dp−dq| = 1
P2 : otherwise.

(3)

We impose a user-defined penalty P1 for small jumps
in disparity that do not exceed a value of one pixel.
Such jumps commonly occur for slanted surfaces and
are typically overpenalized when using the standard
Potts model. A second penalty P2 with P2 > P1 ac-
counts for penalizing large jumps in disparity that oc-
cur at disparity borders. In order to align disparity dis-
continuities with discontinuities in the intensity im-
age, we compute the value of P2 by

P2 =

{

P3 ·P′2 : |Ip− Iq| < T
P′2 : otherwise (4)

with |Ip− Iq| being the summed-up absolute differ-
ences of RGB channels. P′2, P3 and T denote prede-
fined constants.

2.2 Simple Tree Structures

Choosing the set of neighbours N in equation (2)
defines the complexity of the resulting optimization
problem. In the ideal case, N is formed by all pairs of
spatially neighbouring pixels of the reference image.
Since it is known that optimization of the resulting
four-connected grid (Figure 1a) is difficult and com-
putationally challenging, we propose finding approx-
imations of this grid in each individual image point.
Our approximations are based on trees, i.e. graphs that
do not contain cycles. If N consists of pixel pairs that
form a tree on the grid graph, exact minimization of
our energy can efficiently be accomplished via DP.
Our first approximation is shown in Figure 2a.

The tree is rooted on pixel p whose disparity is com-
puted. It includes all horizontal smoothness edges
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2.2 SGM and streaking artifacts

In the light of this result we can understand the occurrence of the streaking artifacts in SGM.
Although the optimization is exact over the star-shaped graph, the graphs for two adjacent
pixels (as shown in figure 2(a)) are loosely related as they share only the nodes on a single
line (plus 4 intersection points). In this case, when the data term on the horizontal line
is weak, i.e. all disparity hypothesis are equally plausible, the messages from the vertical
directions, which are completely unrelated, can and will produce different results for each
pixel. This also means that the smoothness constraint is poorly enforced by SGM because
the messages are restricted to the 8 paths of the graph.

3 More Global Matching

Our main contribution can be summarized as a change in the recursive update formula (3).
In the spirit of the belief update formula (6) we propose to update L

r

using information from
more than one direction. Concretely our strategy injects information from the 2D problem
in the processing of SGM’s 1D paths (see figure 1). This is efficiently done by incorporating
messages from the nodes visited in the previous scanline (i.e. the pixel above).

Let us consider the left-to-right direction. The image is traversed in raster order (left-to-
right, top-to-bottom) and SGM updates each node p using only the beliefs from the node on
its left L

r

(p� r, ·). Instead we propose to access as well the beliefs from the node directly
above p (indicated by the direction r

?) . Thus our proposed recursion is:

L

r

(p,d) =C

p

(d)+ Â
x2{r,r?}

1
2

min
d

02D
(L

r

(p�x,d0)+V (d,d0)). (9)

As a result of this multiple recursion, the belief at a given pixel is influenced by its entire
upper-left quadrant (as illustrated in figure 1). In comparison SGM recursion only sees
information from the line of pixels to its left.

For each propagation direction r we compute L

r

using an adequate traversal order (de-
picted in figure 2(b)). The resulting beliefs are then combined using the over-counting cor-
rected formula (8), and the disparity is estimated by WTA. Compared to SGM, MGM only
requires a few extra operations per pixel.
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Figure 1: An example of a minimum spanning tree gener-
ated from an image.

intensities. The construction of the MST, the message pass-
ing scheme, and the associated probabilistic models are dis-
cussed in the following sections.

3.1. Minimum Spanning Trees from Images

Prior to aggregation, minimum spanning trees are con-
structed from the input images to facilitate the sharing of
disparity evidence between pixels. An assumption is made
that neighboring pixels with similar color are more likely to
have similar disparity, and thus an algorithm stands to ben-
efit from sharing disparity evidence along edges in the tree.
Fig. 1 shows an example of a minimum spanning tree that
connects all of the pixels in a 9×8 image. Notice that short
paths through the tree tend to connect neighboring pixels
with similar color. In contrast, long paths tend to connect
pixels with significantly different color.

In order to find the minimum spanning tree, costs must
first be assigned to each edge linking neighboring pixels in
the four-connected image grid. Since changes in disparity
often coincide with noticeable changes in image intensity
[27], it is natural to choose costs that are proportional to
the intensity difference between neighboring pixels. Here,
the cost of each edge is assigned according to the distance
between pixels as measured by the sum of absolute inten-
sity differences. Once costs have been assigned, Kruskal’s
algorithm [14] is applied to iteratively remove high-cost
edges from the grid until the minimum spanning tree is ob-
tained. The representation of the MST used by the proposed
method is a set of child/parent pixel pairs, ordered in a way
that all paths from the leaf nodes up to the root node can be
traversed in a single scan through the pairs.

3.2. Upward-Downward Algorithm

The MSTs representing the images are assumed to have
the properties of a hidden Markov tree (HMT), i.e., the dis-
parity of each pixel is conditionally independent of the dis-
parities of all other pixels given the disparities of its imme-

c1 d1

c2 d2

c3 d3 c4 d4

Figure 2: Subsection of a hidden Markov tree (HMT) model
where each state node, denoted by dn, is associated with an
observation node, denoted by cn. In this illustration, parent
nodes are placed above, and connected to, their child nodes.
For example, the children of d2 are c(d2) = {d3, d4} and
the parent of d2 is p(d2) = d1.

diate neighbors in the tree. Hidden Markov trees are defined
by 1) a set of connections between nodes that have hidden
states, and 2) a set of observations associated with the state
of each node. In the context of stereo matching, the hidden
state is the disparity dn of pixel n, and the observation is the
vector of costs cn of choosing all possible disparity values.
Fig. 2 illustrates an example of such an HMT.

The HMT model allows efficient calculation of the max-
imum a posteriori (MAP) disparity estimate

d̂n = argmax
dn

P (C|dn)P (dn)

of each pixel n, where C = [c1, . . . , cN ] denotes the set
of all observed matching costs throughout the entire image,
P (C|dn) is the likelihood of observing the cost C given dis-
parity dn, and P (dn) is the prior probability of disparity dn.
The structure and properties of the HMT can be exploited to
calculate the large multivariate distribution P (C|dn)P (dn)
efficiently using the upward-downward algorithm [6].

The probability distribution that is computed using the
upward-downward algorithm can be reformulated as

P (C|dn)P (dn) = P (dn,C)

= P (Cn|dn)P (dn,C\n) (1)

using conditional independence relationships assumed by
the HMT model, where Cn denotes the collection of costs
that belong to the subtree rooted at node dn, and C\n de-
notes the collection of all costs excluding those in Cn. In
Fig. 2, C2 includes c3, c4, and all costs associated with
children of d3 and d4. The cost C\3 includes c1, c2, c4, and
all other costs not connected to children of d3.

The calculation of (1) using the upward-downward algo-
rithm is decomposed into two stages, where β messages are
first passed up from the leaf nodes to the root node (the up-
ward stage) and then α messages are passed down from the
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
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parity map can still take several minutes.
To bypass the NP-complete optimization problem,
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reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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A. Shekhovtsov Parallel Dual Block Optimization for Energy Minimization

(a) (b)

p

(c) (d)
Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Figure 1: Grid structures of previous approaches. Nodes
represent pixels, while edges indicate that the smooth-
ness function operates on the adjacent nodes. (a) Four-
connected grid. (b) Scanline-based DP approaches. (c)
Tree-based DP proposed by (Veksler, 2005). (d) Approach
of (Hirschmüller, 2005) to derive the disparity of pixel p.

ing (Scharstein and Szeliski, 2002). However, a se-
vere limitation of these optimization algorithms is that
they are computationally rather expensive. Especially
for the graph-cut approach, calculation of a single dis-
parity map can still take several minutes.
To bypass the NP-complete optimization problem,

classical DP approaches (Bobick and Intille, 1999;
Ohta and Kanade, 1985; Wang et al., 2006) adopt
a greatly simplified neighbourhood structure in their
smoothness terms. They enforce smoothness only
within, but not across horizontal scanlines. The corre-
sponding grid graph is illustrated in Figure 1b. Since
there is no interconnection between horizontal scan-
lines, an energy minimum for this grid structure can
be derived by computing the optimum for each scan-
line separately. The exact optimum of (1) on each in-
dividual scanline is then determined using DP. Such
approaches are favourable for their excellent com-
putational speed. Skipping the vertical smoothness
edges, however, leads to the well-known scanline
streaking effect. This inherent problem represents a
major reason for the bad reconstruction quality of DP
in comparison to the state-of-the-art.
Recently, (Veksler, 2005) proposed approximat-

ing the four-connected grid via a tree. The motiva-
tion is that efficient DP-based optimization also works
on tree structures. Roughly spoken, the tree is con-
structed by discarding edges that show a high gradient
in the intensity image from the four-connected grid.
In contrast to scanline-based DP, horizontal and ver-
tical edges are treated symmetrically, which weakens

the streaking problem. Nevertheless, as can be seen
from Figure 1c, a large number of edges have to be
sacrificed in order to obtain a tree structure. The in-
formation of these edges remains unused, which is
most likely the reason for the only average results
of this method. Subsequent work (Deng and Lin,
2006; Lei et al., 2006) combines tree-based DP with
colour segmentation. These algorithms improve the
results on standard images such as the Middlebury
set (Scharstein and Szeliski, 2002). They, however,
fail if segments overlap disparity discontinuities.
A different approach to handle the streaking prob-

lem is to compute multiple DP passes. Two-pass
methods (Gong and Yang, 2005; Kim et al., 2005)
first apply DP on the horizontal scanlines and use the
results to bias the second pass, which operates on
the vertical scanlines. While horizontal streaks are
reduced, these algorithms introduce vertical streaks,
and their scanline-based nature is clearly visible in the
resulting disparity maps.

(Hirschmüller, 2005) proposed a hybrid approach
between local and global methods. The disparity
of each pixel is computed using the winner-takes-all
strategy, i.e. without considering the disparity assign-
ments of neighbouring pixels. Instead of aggregating
matching costs from spatially surrounding pixels, the
algorithm computes DP paths from various directions
towards each pixel p as shown in Figure 1d. Cost
aggregation is then performed by summing up the in-
dividual path costs. In Hirschmüller’s approach, the
disparity of an image point is influenced by only a
small subset of the whole image’s pixels. This repre-
sents a problem if none of the paths captures enough
texture to provide a clear cost minimum at the correct
disparity. To weaken this problem, Hirschmüller pro-
posed increasing the number of paths. Nevertheless,
this results in higher computational demands and only
partially represents a remedy to the problem. In a sub-
sequent paper (Hirschmüller, 2006), he addressed this
problem using image segmentation.

2 THE SIMPLE TREEMETHOD

The algorithm proposed in this paper performs a sep-
arate disparity computation for each individual pixel.
We apply an individual tree construction in order to
determine the disparity of a single pixel. The tree’s
root node is formed by the pixel whose disparity
needs to be computed. Although our trees prove to be
effective, their structure is relatively simple. (Hence,
we call our algorithm the Simple Tree Method.) For
now, it is only important to know that a tree spans all
pixels of the reference frame. A global minimum of
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Lagrange decomposition: max
'

' - modular
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min
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(f 1 + ')(x)
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i

Minorize-Maximize Algorithm:

'k+1
2 := max' D

1(') + D

2(')

'k+1 := max' D

2(') + D

2(')

Dual minorant: D1(')  D

1(') for all ',
Exact at current point: D1('k) = D

1('k); similarly for D2.

D

1(') = min
x

(�+ ')(x);
� modular minorant: �(x)  (f 1 + 'k)(x) for all x , denoted: � � f

1 + 'k ;
� is ”between” f

1 + 'k and its minimum: � ⌫ min
x

(f 1 + 'k)(x).

A. Shekhovtsov Parallel Dual Block Optimization for Energy Minimization
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Stereo Matching - Real-Time Reconstruction

Cost Vol. Discrete Cont. Ref. Total

27 ms 73 ms (4 iterations) 39 ms 139 ms

Table: Runtime analysis of the individual components of our stereo matching
method (640⇥ 480, 128 labels).

Figure: Influence of continuous refinement on the reconstruction quality of
KinectFusion.

22 / 26
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Stereo Matching
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Stereo Matching: Real-time fusion
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Stereo Matching: Real-time fusion



GrabCut:  
Joint Segmentation and Parameter Estimation

Based on the work by Rother, Kolmogorov, Blake:  
“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts
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Task 1: Joint Segmentation and Parameter Estimation

Image FG / BG brush• Input:

• Output: 
• Complete segmentation
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Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

Generative model (bottom-up in the picture)

Segmentation u : ⌦ ! {0, 1}
Assignment of pixels to color clusters k : ⌦ ! {1, . . . ,K}
Image I : ⌦ ! R3 – color drawn from Gaussian cluster k

Absence of edges between variables correspond to conditional
independencies.

79 / 85

Task 1, model

• Markov random field (generative) model:

• Segmentation x : ⌦ ! {0, 1}
• Model: p(x) - neighboring pixels are more likely to take the same

segment

• Color clusters: k : ⌦ ! {1, . . .K}
• Model: p(k |x) - conditionally independent for all pixels

• Image: I : ⌦ ! R3
- color drawn from a color cluster

• Model: p(I |k) - conditionally independent for all pixels

BG

FG

Gaussian Mixture
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Task 1, model: segmentation

• Segmentation x : ⌦ ! {0, 1}

p(x) = exp(�J(x)), J(x) =

X

ij2E
�|xi � xj |

Segmentation: p(x)

Mixture Components: p(k | x)

Colors: p(I | k)
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Task 1, model: mixture components

Segmentation: p(x)

Mixture Components: p(k | x)

Colors: p(I | k)

• Color clusters k : ⌦ ! {1, . . .K}
• Conditional independent model

p(k | x) =
Y

i2⌦

p(ki | xi )

• p(ki= | xi=s) = ⇡( | s) - mixture coe�cients

BG appearance: ⇡( | 0)
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Task 1, model: colors

Segmentation: p(x)

Mixture Components: p(k | x)

Colors: p(I | k)

BG appearance: ⇡( | 0)

• Colors: I : ⌦ ! R3

• Conditional independent model

p(I | x , k) =
Y

i2⌦

p(Ii | ki )

• p(Ii | ki = ) = pN (Ii ;µ,⌃)

• Parameters µ, ⌃ can be learned or pre-estimated for e�ciency
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Task 1, Gaussian Mixture View

Segmentation: p(x)

Mixture Components: p(k | x)

Colors: p(I | k)

BG appearance: ⇡( | 0)

• E�cient Color model:

p(Ii | xi ) =
X

ki

p(Ii , ki | xi ) =
X

ki

p(Ii |ki )p(ki | xi )

=

X



pN (Ii ;µ,⌃)⇡( | xi )

• Gaussian mixture



46

Task 1, Derivation of EM Algorithm

Segmentation: p(x)

Mixture Components: p(k | x)

Colors: p(I | k)

• Maximum Likelihood:

• Find segmentation x

• estimate color models ⇡( | s)
• marginalize over hidden color clusters k

BG appearance: ⇡( | 0)
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Task 1, Derivation of EM Algorithm
• Maximum log Likelihood (for one image):

max
x,⇡

log
Y

i2⌦

X



pN (I
i

;µ,⌃)⇡(|xi )p(x)

• Of the form max
QP

, apply EM lower bound:

�
X

i2⌦

X



↵( | x
i

)
⇣
log

�
pN (µ,⌃) + log ⇡(|x

i

)
�
� log↵( | x

i

)
⌘
+ log p(x)

• E step:
↵( | x

i

) / pN (I
i

;µ,⌃)⇡( | x
i

) (1)

• M step:
x 2 argmin

x

J(x)�
X

i

X



↵( | x
i

) log
�
p(I

i

|)
�
⇡( | x

i

) (2)

⇡( | s) /
X

i | x
i

=s

↵( | s) (3)
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Task 1, Overall Algorithm
• EM: Iteratively reestimate

• Segmentation x : ⌦ ! {0, 1} having appearance model ⇡ and

probabilities of hidden components ↵
• Appearance models, ⇡( | s)
• Soft cluster assignment for each pixel, ↵( | xi )

Notice the di↵erence to the following ”ad-hoc” algorithm:

• Ad-hock: Iteratively reestimate

• Segmentation x for current appearance model ⇡
• Appearance models ⇡ from current segmentation

The later method may be not converging and can get stuck more easily,

similarly to K-means.



GrabCut TV version
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Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

Generative model (bottom-up in the picture)

Segmentation u : ⌦ ! {0, 1}
Assignment of pixels to color clusters k : ⌦ ! {1, . . . ,K}
Image I : ⌦ ! R3 – color drawn from Gaussian cluster k

Absence of edges between variables correspond to conditional
independencies.

79 / 85

Grabcut TV version
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Grabcut TV versionProbabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

Segmentation:

Assume TV prior (neighboring pixels are more likely to be in the
same segment)

p(u) = exp(�J(u)), J(u) = �
X

x2⌦

||(ru)(x)||2.

79 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

BG appearance: )1|(κπ

Ru →Ω:

},...,1{: Kk →Ω

3: RI →Ω

Color cluster:

Assume conditional independence

p(k | u) =
Y

x2⌦

p(k(x) | u(x));

p(k(x)=, u(x)=s) = ⇡( | s) – unknown appearance

79 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

BG appearance: )1|(κπ

Ru →Ω:

},...,1{: Kk →Ω

3: RI →Ω

Image colors:

assume conditional i.i.d. given cluster k ,

p(I (x) | k(x)=) = G⌃(I (x)� µ);

parameters ⌃, µk

could be learned or preestimated for e�ciency

79 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

BG appearance: )1|(κπ

Ru →Ω:

},...,1{: Kk →Ω

3: RI →Ω

Image colors are drawn from a mixture:

p(I (x) | u(x)=s) =
X



⇡( | s)G⌃(I (x)� µ);

79 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Graphical Model

Segmentation

Color cluster

Color

BG appearance: )1|(κπ

Ru →Ω:

},...,1{: Kk →Ω

3: RI →Ω

Maximum Likelihood:

find segmentation u

estimate color models ⇡( | s)
marginalize over latent color clusters k

79 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Apply EM Algorithm

Maximum likelihood:

argmax

u,⇡

X

k

Y

x2⌦

p(I (x) | k(x))⇡(k(x) | u(x))p(u)

derive (blackboard)

= argmax

u,⇡

Y

s2{0,1}

Y

x2⌦ | u(x)=s

X



p(I (x) |)⇡( | s)p(u),

to allow for linearization, express log likelihood as as

X

s2{0,1}

X

x2⌦

(1 + s � u(x)) log
KX

=1

p(I (x) |)⇡( | s) + log p(u).

80 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Apply EM Algorithm

EM lower bound:

X

s2{0,1}

X

x2⌦

log
KX

=1

⇣
p(I (x) |)⇡( | s)

⌘(1+s�u(x))

+ log p(u)

introduce numbers ↵
x

( | s) � 0 such that
P

 ↵x

( | s) = 1,

�
X

s2{0,1}

X

x

X



⇣
↵
x

( | s)(1 + s � u(x)) log[p(I (x) |)⇡( | s)]

� log↵
x

(k(x) | s)
⌘
+ log p(u).

Bound valid for u : ⌦ ! [0, 1]!

81 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Maximization Step

Maximization step in u (blackboard):

u := argmax

u

X

x

g(x)u(x) + J(u),

g(x) =
KX

=1

⇣
↵
x

( | 1)� ↵
x

( | 0)
⌘
log[p(I (x) |)⇡( | s)].

(log likelihood ratio of FG and BG models with soft assignment ↵)

Maximization step in ⇡ (blackboard):

⇡( | s = 0) /
X

x

↵
x

( | s = 0)(1� u(x)),

⇡( | s = 1) /
X

x

↵
x

( | s = 1)u(x).
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Expectation Step

(Maximize (tighten) bound in ↵)

(blackboard):

↵
x

( | 1) / u(x)p(I (x) |)⇡( | 1)
↵
x

( | 0) / (1� u(x))p(I (x) |)⇡( | 0),

83 / 85



Probabilistic Models Bayesian Decision Theory Maximum Likelihood Bayesian Estimation Expectation Maximization

Overall Algorithm

Iteratively reestimate

Soft (hard) segmentation, u : ⌦ ! [0, 1]
(resp. u : ⌦ ! {0, 1})
Appearance models, ⇡( | s)
Soft cluster assignment of each pixel, ↵

x

( | s) 2 [0, 1]
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