
0.1 Persisting Ontologies

0.1 Persisting Ontologies

RDF Databases
On the web, RDF data can be stored in

• RDF files,

• HTML, embedded into RDFa annotations,

• RDF stores available through a SPARQL endpoint,

– provide means to efficiently manage large RDF data,

– considered NoSQL databases,

– most of them are relational RDF stores, i.e. implemented on top of rela-
tional databases.

0.1.1 RDF Stores

RDF Store Fundamentals

Classification of relational RDF stores

vertical table stores store each triple in a three-column table (s, p, o)1

TRIPLES
subject predicate object
John loves Mary
John hates Bob
Mary loves John
...

property table stores store triples with the same subject as a n-ary table row, where

predicates are modeled as table columns

TRIPLES PER SUBJECT
subject loves hates
John Mary Bob
Mary John null
...

horizontal table stores store triples with the same property in one table
loves

subject object
John Mary
Mary John
...

hates
subject object
John Bob
...

Existing triple stores

1The words in Courier mean IRIs, e.g. John means http://e.cz/John.

1

triple store web site type
4store http://4store.org property tables [1]
Allegro-Graph http://franz.com/agraph ?
BigData http://bigdata.com vertical
TDB (Fuseki) http://jena.apache.org vertical
SDB http://jena.apache.org vertical (RDBMS)
Mulgara (Kowari) http://www.mulgara.org vertical
Oracle Spatial and Graph http://www.oracle.com vertical (RDBMS)
OWLIM http://www.ontotext.com/owlim vertical
Redland RDF Library http://www.ontotext.com/owlim vertical
OpenRDF Sesame http://www.openrdf.org vertical
StarDog http://stardog.com ?
Virtuoso http://virtuoso.openlinksw.com vertical (RDBMS)

Transactional Processing in Triple Stores
Generally, it is difficult to provide ACID for triple stores. Most triple stores accept

BASE instead:

ACID:

Atomicity – if an operation within a transaction fails, the whole transaction rolls back

Consistency – no constraint is violated in steady state (when no tx is running)

Isolation – one transaction does not see intermediate data of another transaction

Durability – after commit, a transactional data are kept persistent, preventing power loss, crashes, etc.

BASE:

BAsic availability – high data replication to prevent their loss on crash/system failure, etc,

Soft state – the data are soft, their consistency is the responsibility of the application developer,

Eventual consistency – data will converge to a consistent state at some point ...

Indexing in Triple Stores

• quad stores extend vertical triple stores with one more column for representing the
context (named graph) in which the triple resides, i.e. (S,P,O,C),

• vertical stores typically create B-tree indexes on S,P,O(,C) columns

Example

OSPC index means that the index table contains triples sorted according to ob-
ject, then according to subject, then predicate and then context. This index is
suitable for searching data given an object (i.g. matching the BGP ?x ?y :a),
or object+subject (e.g. matching the BGP ?x :p :a).

2

http://4store.org
http://franz.com/agraph
http://bigdata.com
http://jena.apache.org
http://jena.apache.org
http://www.mulgara.org
http://www.oracle.com
http://www.ontotext.com/owlim
http://www.ontotext.com/owlim
http://www.openrdf.org
http://stardog.com
http://virtuoso.openlinksw.com

0.1 Persisting Ontologies

Materialization

• Some RDF stores use materialization to speed-up queries. This means that on
each update the set of inferences is recomputed and stored.

RDFS Materialization Example

Listing 1 : Data for Insertion
@prefix : <http://example.org/>

:B rdfs:subClassOf :A .
:C rdfs:subClassOf :B .

Listing 2 : Stored data
@prefix : <http://example.org/>

:B rdfs:subClassOf :A .
:C rdfs:subClassOf :B .
:C rdfs:subClassOf :A .

OpenRDF Sesame

OpenRDF Sesame Features
is an RDF triple store providing wide range of

Repository Types

• in memory

• filesystem

• relational database

• federated

• SPARQL endpoint

Access Types

• Java API

• CLI, Workbench

• SPARQL HTTP protocol

Inferencing

• No

3

• RDFS (materialized)

• Direct Type (materialized)

• Custom rules

Query Languages

• SPARQL

• SeRQL

OpenRDF Sesame

• sesame uses SPOC and POSC indexes by default,

• lacking user management support,

© simple and well-known system capable of handling big data,

§ poor administration tools,

• more in tutorials . . .

OWLIM

• is an OWL repository built on Sesame

• implemented using rules (forward/backward chaining), so it is incomplete w.r.t.
OWL, but provides most of the inferences,

• uses materialization

• many optimizations and extensions, e.g. spatial queries:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

PREFIX : <http://onto.mondis.cz/resource/npu/>

SELECT DISTINCT ?pagis ?pagis_lng ?pagis_lat ?idReg ?pagis_idobPg
WHERE {

?pagis geo:lat ?pagis_lat .
?pagis geo:long ?pagis_lng .
?pagis :hasIdReg ?idReg .
?pagis :hasIdobPg ?pagis_idobPg .
?pagis omgeo:within (10 10 200 200)

}

4

0.1 Persisting Ontologies

Ontology Management in RDF Stores

Methods of Communication with RDF Stores

• custom APIs – Jena, Sesame,

Model m = ModelFactory.getModel("http://example.org/personal");
Resource i = m.getResource("http://example.org/person1");
i.addProperty(ResourceFactory.getProperty("http://example.org/hasName"),"John");
m.close();

• SPARQL Update through a SPARQL endpoint,

PREFIX : <http://example.org/>

INSERT { GRAPH :personal { :person1 :hasName "John" } }

• SPARQL Graph Store HTTP Protocol.

POST /gs?graph=http%3A%2F%2Fexample.com%2Fpersonal
Host: anyhost.com
Content-Type: text/turtle
@prefix : <http://example.com/>.
:person1 :hasName "John".

0.1.2 SPARQL Update

Types of update operations
Each request consists of one or more operations:

graph update operations are DELETE DATA,
INSERT DATA,
DELETE/INSERT,
LOAD,
CLEAR

graph management operations are CREATE,
ADD,
COPY,
MOVE,
DROP

5

Graph Update Operations

INSERT DATA

Syntax and semantics

syntax INSERT DATA QD

semantics inserts ground data to a GS, blank nodes are considered disjoint with GS.

6

0.1 Persisting Ontologies

Example query RU1:

PREFIX : <http://example.org/>

INSERT DATA {
:john a :Employee .
GRAPH :personal {
:john :hasGender ’male’.

}
GRAPH :corporate {
:john :hasFunction _:d.
_:d :hasName ’developer’.

}
}

After two runs of RU1 w.r.t an empty GS

@prefix : <http://example.org/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

:john rdf:type :Employee.
:personal {

:john :hasGender ’male’.}
:corporate {

:john :hasFunction _:b.
_:b :hasName ’developer.
:john :hasFunction _:c.
_:c :hasName ’developer. }

DELETE DATA

Syntax and semantics

syntax DELETE DATA QD

semantics deletes ground data from a GS, b-nodes are forbidden in QD.

Example query RU2:

PREFIX : <http://example.org/>

DELETE DATA {
:john a :Employee .
GRAPH :personal {
:john :hasGender ’male’.

}
}

RU2 returns an empty GS after a single run w.r.t the following graph:

@prefix : <http://example.org/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

:john rdf:type :Employee.
:personal {

:john :hasGender ’male’.}

7

DELETE/INSERT

Syntax and semantics

syntax (WITH iriRef)?
(DelCls InsCls? |InsCls)
(USING (NAMED)? iriRef)*
WHERE GGP

semantics deletes ground data from a GS, b-nodes are forbidden in QD.

WITH defines a graph that the query operates on (matching GGP, deleting in DelCls,
inserting in InsCls)

PREFIX : <http://example.org/>

WITH :personal
INSERT { ?x a :ManWithIntoPersonal . }
WHERE { ?x :hasGender ’male’. }

USING (NAMED)? defines a graph that the WHERE part operates on.
USING overrides WITH, and GRAPH overrides both.

PREFIX : <http://example.org/>

INSERT { GRAPH :newpersonal
{ ?x a :ManUsingIntoAnother . } }
USING NAMED :personal
WHERE { ?x :hasGender ’male’. }

LOAD

Syntax and semantics

syntax LOAD iriRefS (INTO GRAPH iriRefT)

semantics loads RDF document from the specified IRI into the specified graph.

INTO GRAPH iriRefT loads the data into the graph iriRefT.

No data are deleted from the graph iriRefS. If INTO GRAPH clause is missing, the data
are inserted into the default graph.
PREFIX : <http://example.org/>

LOAD <http://www.w3.org/TR/owl-guide/wine.rdf>
INTO GRAPH :wine

8

0.1 Persisting Ontologies

CLEAR

Syntax and semantics

syntax2 CLEAR (GRAPH iriRef |DEFAULT |NAMED |ALL)

semantics clears all data from the specified graph(s).

GRAPH iriRef clears the graph specified by the iriRef

DEFAULT clears only the default graph

NAMED clears all named graphs

ALL clears all graphs

PREFIX : <http://example.org/>

CLEAR GRAPH :newpersonal

Graph Management Operations

CREATE

Syntax and semantics

syntax CREATE GRAPH iriRef

semantics creates an empty named graph identified by iriRef

• for GSs (e.g. Sesame) that create/drop graphs “on demand” (e.g. during INSERT,
CLEAR, etc.) the CREATE operation does nothing

PREFIX : <http://example.org/>

CREATE GRAPH :yetnewpersonal

DROP

Syntax and semantics

syntax DROP (GRAPH iriRef |DEFAULT |NAMED |ALL)

semantics drops (deletes) the specified graphs.

• for GSs (e.g. Sesame) that create/drop graphs “on demand”, DROP does the same
thing as CLEAR. In other cases, it additionally deletes the graph.

DROP ALL

9

COPY/MOVE/ADD

Syntax and semantics
syntax (COPY|MOVE|ADD) (GRAPH iriRefS |DEFAULT) TO (GRAPH iriRefT |DEFAULT))

semantics copies/moves/adds data from one named/default graph to another named/de-
fault graph.

• MOVE deletes the data in the source graph, COPY/ADD leaves them untouched.

• COPY,MOVE deletes the data in the target graph, ADD leaves them untouched.

PREFIX : <http://example.org/>

COPY GRAPH :personal
TO GRAPH :yetnewpersonal2

Remarks

• ADD, COPY, resp. MOVE, can be simulated by INSERT, DROP/INSERT, resp.
DROP/INSERT/DROP combination.

• all graph management operations have their SILENT form, similarly to LOAD and
CLEAR.

0.1.3 SPARQL Graph Store HTTP Protocol
HTTP crash course

• Hypertext Transfer Protocol, currently HTTP 1.1, RFC 2616

• operations – GET, POST, PUT, DELETE, HEAD, PATCH

• return codes – 2xx (success), 3xx (redirection), 4xx (protocol error), 5xx (server
error)

Graph Identification

direct means using graph IRI as request URI
GET /g1 HTTP/1.1
Host: ex.cz
Accept: text/turtle; charset=utf-8

indirect means using graph IRI as a request parameter whenever direct identification is
not possible (Why ?).

GET /graph-store?graph=http%3A//ex.com/g1 HTTP/1.1
Host: example.cz
Accept: text/turtle; charset=utf-8

• graph=http%3A... and default are used to indirectly identify named/de-
fault graphs respectively, similarly to a SPARQL GRAPH clause.

10

0.1 Persisting Ontologies

HTTP operations

Description

GET retrieves an RDF graph corresponding to the referred graph (like SPARQL CONSTRUCT,

PUT stores the RDF payload as the referred graph in GS (like SPARQL DROP/INSERT),

DELETE removes the graph content of the referred graph in GS (like SPARQL DROP),

POST inserts the RDF payload content to the referred graph in GS (like SPARQL
INSERT),

HEAD same as GET, but without returning the actual RDF content, e.g. for testing
validity of dereferencable IRIs,

(PATCH) optionally embedding a SPARQL 1.1 Update request to modified the referred
graph.

HTTP details

• Accept header for GET specifies the mime type for requested RDF

• Content-type header for PUT,POST specifies the mime type of the enclosed
RDF payload

• typical RDF mime types RDF/XML Turtle N3 TriG
application/rdf+xml text/turtle text/rdf+n3 application/x-trig

• typical HTTP error codes:

400 Bad Request – failing to parse RDF payload according to the given Content-
type.

404 Not Found – the requested content does not exist

405 Method Not Allowed – unsupported HTTP verb/malformed request syntax

406 Not Acceptable – in case Accept header is invalid

415 Unsupported Media Type – content type is not understood

• content type multipart/form-data for POST requests can be used to RDF-
merge more RDF documents into a graph in GS.

11

Examples

GET /gs?graph=http%3A%2F%2Fex.com%2Fc
Host: example.com
Accept: text/turtle

PREFIX : <http://ex.com/>

CONSTRUCT {?s ?p ?o}
WHERE { GRAPH :c {?s ?p ?o} }

PUT /gs?graph=http%3A%2F%2Fex.com%2Fc
Host: example.com
Content-Type: text/turtle
@prefix : <http://ex.com/>.
:j :hasName "John"@en.

PREFIX : <http://ex.com/>

DROP SILENT GRAPH :c
INSERT { GRAPH :c
{:j :hasName "John"@en}}

POST /gs?graph=http%3A%2F%2Fex.com%2Fc
Host: example.com
Content-Type: text/turtle
@prefix : <http://ex.com/>.
:j :hasName "John"@en.

PREFIX : <http://ex.com/>

INSERT { GRAPH :c
{:j :hasName "John"@en}}

DELETE /gs?graph=http%3A%2F%2Fex.com%2Fc
Host: example.com

PREFIX : <http://ex.com/>

DROP GRAPH :c

OpenRDF Sesame HTTP Protocol

<SESAME_URL>
/protocol : protocol version (GET)
/repositories : overview of available repositories (GET)
/<REP_ID> : query eval. and admin. tasks on a repo (GET/POST/DELETE)
/statements : repository statements (GET/POST/PUT/DELETE)
/contexts : context overview (GET)
/size : #statements in repository (GET)
/rdf-graphs : named graphs (NGs) overview (GET)
/service : GS ops on indirectly ref. NGs (GET/PUT/POST/DELETE)
/<NAME> : GS ops on directly ref. NGs (GET/PUT/POST/DELETE)
/namespaces : overview of namespace definitions (GET/DELETE)
/<PREFIX> : namespace-prefix definition (GET/PUT/DELETE)

12

0.1 Persisting Ontologies

0.1.4 Application Access to Ontologies

RDF access – status

• Most libraries are in Java (open-source), but many others appear as well in other
languages, incl. python, .NET, or Ruby.

• open-world (ontologies) vs. closed-world (application data model)

Low-level APIs

OWLAPI (http://owlapi.sourceforge.net) – a de-facto standard API for ac-
cessing/parsing OWL 2 ontologies,

Jena (http://jena.apache.org) – complex RDF/SPARQL API; one of the most
used ones

Sesame (http://www.openrdf.org)– RDF API for programmatic access to the
Sesame RDF triple store.

... and other

Listing 3 : Example Jena code
Model m = ModelFactory.getModel("http://example.org/personal");
Resource i = m.getResource("http://example.org/person1");
i.addProperty(ResourceFactory.getProperty("http://example.org/hasName"),"John");
m.close();

High-level APIs
... are typically based on ORM

AliBaba (http://www.openrdf.org)– API for programmatic access to RDF datasets
through Sesame

JAOB (http://wiki.yoshtec.com/jaob) – API for programmatic access to OWL
ontologies

JOPA (http://sourceforge.net/projects/jopa) – API for programmatic ac-
cess to OWL2-DL ontologies, with integrity constraint checking

Listing 4 : Example JOPA code
Person person1 = em.find("http://example.org/person1");
person1.setHasName("John"); \\ plus ORM for Person class

13

http://owlapi.sourceforge.net
http://jena.apache.org
http://www.openrdf.org
http://www.openrdf.org
http://wiki.yoshtec.com/jaob
http://sourceforge.net/projects/jopa

References
[1] Steve Harris, Nick Lamb, and Nigel Shadbolt. “N.: 4store: The Design and Imple-

mentation of a Clustered RDF Store”. In: In: Scalable Semantic Web Knowledge
Base Systems - SSWS2009. 2009, pp. 94–109.

14

	Persisting Ontologies
	RDF Stores
	SPARQL Update
	SPARQL Graph Store HTTP Protocol
	Application Access to Ontologies

