0.1 Querying Semantic Web — SPARQL

0.1 Querying Semantic Web — SPARQL

History of RDF Query Languages

relational-based — SPARQL, RQL, TRIPLE, Xcerpt, SeRQL

reactive-rule language Algea (see http://www.w3.org/2001/Annotea)

e actions (ask, assert, fwrule), answers (bindings for vars, proof RDF triples)

path-based language Versa (see http://4suite.org)
o “XPath for RDF”

e forward/backward traversal, filtering, but no support for restructuring/con-
structing queries.

..., there are plenty of them, but today SPARQL wins.

SPARQL vs. SQL
First, let’s shortly compare a query in SQL and SPARQL.

"Get projects having male administrators starting on the letter N’

SELECT e.surname AS es,
p.name AS pn

FROM employee e, project p

WHERE e.gender = 'male’
AND p.administratorId = e.id
AND e.surname LIKE 'N\%’;

SELECT ?sn, (?projname AS ?pn)
WHERE {

?e a :Employee .

?e :surname ?sn .

?e :gender 'male’.

?p a :Project .

?p :name ?pn .

?p :administrator ? e.

FILTER (strstarts(?sn,’N’))

SPARQL Factsheet

e SPARQL 1.1 was standardized as a set of 12 W3C Recommendations on 21 March
2013, covering

— a query language (SPARQL 1.1 Query Language) [?]
— a “data definition language” (SPARQL 1.1. Update language)

— definition of SPARQL services (protocol over HT'TP, graph management HTTP
protocol), semantic description,

— an extension for executing distributed queries over more SPARQL endpoints

7]

— JSON, CSV, TSV, XML query result formats [?]

— definition of entailment regimes for RDF extensions (e.g. OWL, see the re-
spective lecture) [?].

0.1.1 SPARQL Query Language

Query Types

SELECT - returns a binding table (similarly to SQL)

ASK - returns a true/false indicating existence of the given pattern in the RDF graph

CONSTRUCT - returns an RDF graph constructed from the binding table

DESCRIBE - returns an RDF graph describing the given resource (semantics not fixed)

Query Evaluation

is used for

Pattem matching

{ 7e a :Employee .
?e :gender 'male’ . |

executes

SELECT ?e

?e a :Employee .

RDF Graph

?e :gender 'male’ . has result

@prefix : <http://example.org/> :johnsmith a :Employee

:johnsmith :gender 'male’ .
:marysmith a :Employee .
:marysmith :gender 'female’ .
:susannesmith a :Employee .
:garysmith a :Employee .
:garysmith :gender 'male’ .

ASK

Basic Definitions

{

?e a :Employee .

produces

Binding Table

7e

<http://example.orgfjohnsmith>

<http:/fexample.org/garysmith>

Ajdwis-uou s|

ASK true/false result

?e :gender 'male’ . has result

¥

CONSTRUCT {
?e a :MaleEmployee .

?e a Employee . has result

?e :gender 'male’ .

true

RDF Graph

@prefix : <http://fexample.org/=
:johnsmith a :MaleEmployee .
:garysmith a :MaleEmployee .

wiznied 105U 3yl 01 paidde s| Buipuig yoea

RDF Term is an element of the set of RDF terms T'= 17 U T U T}, being a union of
set of all IRIs, blank nodes and literals respectively.

graph store is a mutable container providing an RDF dataset at each time,

solution is a mapping p : V — T assigning an RDF term to each variable from the

query,

0.1 Querying Semantic Web — SPARQL

result set is a list R = (i1, ..., uy,) of solutions,
triple pattern (TP) is a member of (TUV) x (T;UV) x (TTUV),

basic graph pattern (BGP) is a set BGP = {TPy,...,TP,} of triple patterns.

Graph Patterns — Overview
Graph patterns cover all basic algebraic operations:

e conjunction (sequence of graph patterns),
e disjunction (UNION pattern),
e negation (FILTER NOT EXISTS, MINUS)

e conditional conjunction (OPTIONAL)

[Basic Graph Pattern (BGP)

Hop Ty
Y s .
fa single BGP)

rGrnup Graph Pattern (GGP)
{7 :p?y.}
{?y s :a.}
(two GGPs)

v . Optional Graph Pattern (OGP)

'? s
[Graph Pattern (GP)]{]— D}:?TF:D?I'?:AL {?y:s :a.)}
A (a BGP and an OGP)

[Alternative Graph Pattemn (AGP) |
{7x:pl 7y}
UNION
{?x:p2?y.}
(two GGPs in an AGP)

[{Patter'ns on Named Graphs)

Basic Graph Patterns

Listing 1 : Repository content

:inventors {
r:Thomas_Edison :invented :bulb
r:J_Cimrman :invented :bulb
:bulb rdfs:label "Bulb"@en , "Zarovka"@cs
:wheel rdfs:label "Wheel"Q@en
_:x :invented :wheel
_:y :invented :SteamEngine
_:z :invented :Gunpowder
:Gunpowder rdfs:label "Strelny, prach"@cs
}

Listing 2 : Query with a BGP

SELECT ?s °1

WHERE {
?s :invented ?i.
?1 rdfs:label ?1.}

Table 0.1: Result set

S 1

r:Thomas_Edison “Bulb”@en
r:J_Cimrman “Bulb” @en
r:Thomas_Edison “Zarovka” Qcs
r:J_Cimrman “Zarovka” Qcs

_a “Wheel” Qen

_b “Strelny prach”@cs

Filtering results
Description

syntax BGP1 FILTER(boolean condition) BGP1

description FILTER clause filters BGP results; it can be anywhere in a BGP (does not
break it)

Listing 8 : Query with a BGP

SELECT ?s 21
WHERE
?s :invented ?i.
?i rdfs:label 7?1
FILTER (regex (2?1, " .ul.x")
&& contains (str(?s),"Cimr"))

0.1 Querying Semantic Web — SPARQL

e string functions —e.g. strlen, contains, substr, concat, regex, replace

e RDF term functions — e.g. isIRI, IRI, isBlank, BNODE, isLiteral,
str, lang, datatype

e ..., see SPARQL 1.1 spec.

Optional data

Description
syntax GP1 OPTIONAL { GP2 }

description results of GP1 are optionally augmented with results of GP2, if any. Op-
tionals are left-associative.

Listing 4 : Two optionals

SELECT ?s ?i 21
WHERE
?s :invented ?i.
OPTIONAL ({
?i rdfs:label ?1 FILTER (lang(?l)="en").
} OPTIONAL {
?1 rdfs:label ?1 FILTER (lang(?l)="cs")
}

Table 0.2: Result set

s 1

r:Thomas_Edison ~ “Bulb”@en

r:J_Cimrman “Bulb” @en

_a “Wheel” @en

b

_c “Strelny prach” @cs
Negation

negation as failure — i.e. what cannot be inferred is considered false.

two constructs — MINUS vs. FILTER NOT EXISTS

Listing 5 : MINUS

SELECT ?sl 21
{ ?sl :invented ?i.

MINUS |
?s2 :invented 7?1 .
FILTER(?sl != ?s2) . }}

Variable ?s1 is not bound in the MINUS pattern. Returns all inventors.

Listing 6 : FILTER NOT EXISTS

SELECT ?sl 21
{
?sl :invented ?i.
FILTER NOT EXISTS {
?s2 :invented ?i .
FILTER (?sl != ?s2). }}

Returns all inventions that were invented just by one inventor.

Property Paths

Description
Property paths allow to express simple regular expressions on properties, as follows
syntax matches (e(;) means path element, p(;) means iri or "iri)
iri an IRI (path of length 1)
“e an inverse path (o — s)
e1 / es a sequence path of e; followed by e
e1 | e an alternative path of e or e
ex a sequence path of zero or more matches of e
e+ a sequence path of one or more matches of e
e? a sequence path of zero or one more matches of e
'(p1]...|pn) any IRI not matching any of p;
(e) group path (brackets for precedence)

Property Paths — Examples

Listing 7 : Get the name of a resource.

SELECT «
{

?s rdfs:label/dc:title ?name.

}

Listing 8 : Get elements of an RDF collection.

SELECT

{
?s (rdf:restx)/rdf:first ?listItem.
}

0.1 Querying Semantic Web — SPARQL

Aggregations

Description
Similarly to SQL, SPARQL allows using aggregation functions for numeric/sting data:

COUNT (?var), or COUNT (DISTINCT ?var) — counts number of (distinct) occurences
of ?var in the resultset,

MIN (?v) ,MAX (?v),SUM(?v) ,AVG (?v) — analogous to their SQL counterparts,

GROUP _CONCAT (?var; separator = <SEP>) AS ?group) - concatenates all el-
ements in the group with the given separator character,

SAMPLE - takes an arbitrary representative from the group.

Usage of (?expr as ?var) alias is obligatory.
Similarly to SQL, SPARQL allows computing aggregates over particular data groups
and filter in them using GROUP BY/HAVING construct.

Aggregation — Examples

Listing 9 : Compute the number of inventions of each inventor.

SELECT (COUNT (?s) as ?count) ?i (GROUP_CONCAT (?s;separator=",") as ?inventors)
FROM :inventors
WHERE
?s :invented ?i.
}
GROUP BY 7?1
HAVING (COUNT (?s) > 1)

Variable assignment

Description

Variables can be assigned results of function (or aggregation function). The syntax is
(expr AS ?v), where expr is an expression and ?v is the newly create variable not
appearing before.

Listing 10 : Compute the number of inventions of each inventor.

SELECT (COUNT (?s) AS ?count) ?invention
FROM :inventors
WHERE
?s :invented ?i .
?i rdfs:label 2?1
BIND (concat ("Invention: ",?1) AS ?invention)
}
GROUP BY ?i ?invention

Distributed Queries

Syntax and semantics
syntax ...SERVICE (SILENT) sparglServiceURI { GP }

semantics this clause poses a sparql query described by graph pattern GP to a remote
SPARQL endpoint sparglService URI

Listing 11 : DBPedia service query

SELECT ?s ?p 7?0 °?i
WHERE {
GRAPH :inventors { ?s :invented ?1i. }
OPTIONAL { SERVICE SILENT
<http://dbpedia.org/spargl> {
?s ?p 70
FILTER(strstarts(str(?p),
concat (str(p:), "death™))) }}}

Listing 12 : Local repo content

:inventors {
r:Thomas_Edison :invented :bulb.
r:J_Cimrman :invented :bulb.

}

Other Features

e VALUES - predefined variable bindining specified in the tabular form
e ORDER BY, LIMIT, OFFSET — used analogously to SQL
e FROM, FROM NAMED — used to specify active default/named graphs for the query

e SELECT DISTINCT - removes duplicates from the results

SPARQL SELECT/ASK results

CSV for SELECT; loses information about datatypes/languages of RDF terms
TSV for SELECT; is lossless

XML, JSON for SELECT, ASK,; is lossless, supports additional information (e.g. columns
identification through link attribute),

0.1 Querying Semantic Web — SPARQL

{

"head": {
"vars": ["person", "name"]
)I
"results": {
"bindings":
[{
"person": {
"type" : "uri",
"value": "http://ex.com/pl" },

"name": {
"type":"literal",

"value": "Smith" }
oA
"person": {
"type": "uri",
"value": "http://ex.com/p2" }

}
}I
}

Related Technologies

SPIN (SPARQL inference notation) — SPARQL rules encoded in RDF (http://spinrdf.

org/)

iSPARQL — SPARQL visual query builder (http://oat.openlinksw.com/isparqgl/)

SNORQL — Web front-end for exploring SPARQL endpoints (https://github.com/

kurt jx/SNORQL)

SeRQL — Sesame query language (alternative to SPARQL)

SQWRL (Semantic Query-Enhanced Web Rule Language) — query language based on
SWRL (see next lecture), http://protege.cim3.net/cgi-bin/wiki.pl?

SQOWRL

References

