Machine Learning and Data Analysis
 Lecture 8: Learning Logic Formulas

Filip Železný

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics Intelligent Data Analysis lab
http://ida.felk.cvut.cz

November 22, 2011

PAC Learning

So far our PAC-learning framework considered sample complexity

- how fast m grows with $1 / \epsilon, 1 / \delta$, and n
- we requested m to grow polynomially

Note about PAC-learning: inability to produce a consistent hypothesis implies inability to PAC-learn

- Fix a finite $X^{\prime} \subseteq X$, set $P_{X}(x)=1 /\left|X^{\prime}\right|$ for all $x \in X^{\prime}$, set $\epsilon<\frac{1}{\left|X^{\prime}\right|+1}$ and $\delta<1$ (we are allowed to set any P_{X}, ϵ, and δ in PAC-learning).
- If hypothesis f is not consistent on an arbitrary example (x, y), then $e(f) \geq 1 /\left|X^{\prime}\right|>\epsilon$, violating a PAC-learning condition with probability $1>\delta$
- Thus if f is not consistent then we did not PAC-learn.

Efficient PAC-Learning

We now also consider computational complexity

Efficient PAC Learnability

An algorithm efficiently PAC-learns \mathcal{C} by \mathcal{F} if it PAC-learns \mathcal{C} by \mathcal{F} in polynomial time.

Polynomial: again in $1 / \epsilon, 1 / \delta$, and the size n of examples

- Learning time grows at least as m does: learner needs at least a unit of time for processing each example
- Efficient PAC-learning thus requires each example to be processed in polynomial time
- Previous slide now implies: if finding a consistent model is NP-hard then we cannot efficiently PAC-learn (unless RP=NP)

Conjunctions and Disjunctions

$X=\{0,1\}^{n}$, i.e each $x=\left(x^{1}, \ldots, x^{n}\right)$ where $x^{i} \in\{0,1\}, Y=\{0,1\}$
each f in $\mathcal{F}=\mathcal{C}$ defined by a conjunction ϕ of literals using propositional variables from set $\left\{p_{1} \ldots p_{n}\right\}$
$f(x)=1$ iff ϕ is true under assignment of values x^{i} to p^{i}
Generalization algorithm:

```
\phi= p
for each example (x,1) \inS do
    for i=1 ..n n do
        if }\mp@subsup{x}{}{i}=0\mathrm{ then
        delete pi from \phi
        else
            delete }\neg\mp@subsup{p}{i}{}\mathrm{ from }
return \phi
```


Conjunctions and Disjunctions (cont'd)

Algorithm never deletes a literal that must stay in ϕ. Final ϕ is thus consistent or no consistent ϕ exists.

A consistent algorithm exists and $|\mathcal{F}|=3^{n}$, therefore conjunctions are PAC-learnable. ${ }^{1}$

Sample complexity: $m \geq \frac{1}{\epsilon}\left(n \ln 3+\ln \frac{1}{\delta}\right)$
Algorithm makes $m \cdot n$ steps, i.e. time linear in n (size of examples), therefore conjunctions are efficiently PAC-learnable.

Same applies for disjunctions using a simple transformation:

- run algorithm on 'negated' examples $(x, 1-c(x))$
- negate its output $\phi(\neg \phi$ is a disjunction)
${ }^{1}|\mathcal{F}|=2^{2 n}$ if $p_{i} \wedge \neg p_{i}$ allowed in the conjunction.

k-Conjunctions and k-Disjunctions

Generalization algorithm produces the most specific (longest) consistent ϕ. Often, small ϕ are wanted.

A k-conjunction contains at most k literals. $\mathcal{C}^{k c o n j}$ is efficiently PAC-learnable simply by trying the $\mathcal{O}\left(n^{k}\right)$ possible k-conjunctions on n variables.

Heuristic approaches such as best-first search may be employed to speed-up the search within the polynomial bound. Search would start from the empty conjunction, adding a single literal in each step. The heuristic function evaluating the current conjunction ϕ would e.g. be

$$
h(\phi)=-|\{(x, 0) \in S \mid x \models \phi\}|
$$

while all descendants of any ϕ such that $x \not \models \phi$ for some $(x, 1) \in S$ would be pruned.

k-term DNF and k-clause CNF

A k-term DNF formula: disjunction of at most k conjunctions ('terms'). Example of a 3-term DNF formula:

$$
\left(\neg p_{1} \wedge p_{3}\right) \vee\left(p_{2} \wedge \neg p_{3} \wedge p_{4} \wedge \neg p_{6}\right) \vee p_{2}
$$

A k-clause CNF formula: conjunction of at most k disjunctions ('clauses'). Example of a 3-clause CNF formula:

$$
\left(p_{1} \vee \neg p_{3}\right) \wedge\left(\neg p_{2} \vee p_{3} \vee \neg p_{4} \vee p_{6}\right) \wedge \neg p_{2}
$$

Learnability results for the two classes analogical (again reduction by negation), we continue analysis with k-term DNF.

Consistent 3-term DNF as Graph Coloring

Finding a 3-term DNF formula consistent with a sample is as hard graph 3-coloring.

Graph 3-coloring:

- given vertices V and edges E,
- assign one of 3 colors to each vertex $v \in V$ so that no adjacent vertices have same color
- NP-complete problem

Graph Coloring

Reduction from a Graph to a Learning Sample

Graph	Sample
vertices $v_{i} \ldots v_{n}$	propositional variables $p_{i} \ldots p_{n}$
vertex v_{i}	example $(x, 1), x^{k}=\left\{\begin{array}{l}0 \text { if } k=i \\ 1 \text { otherwise }\end{array}\right.$
e.g.: vertex v_{3}	example $(11011,1)$
edge $e_{i j}$	example $(x, 0), x^{k}=\left\{\begin{array}{l}0 \text { if } k=i \text { or } k=j \\ 1 \text { otherwise }\end{array}\right.$
e.g.: edge v_{34}	example $(11001,0)$

Reduction takes time linear in $m=|V|+|E|$ and n.
Remind: $(x, 1)$ denote positive examples, $(x, 0)$ negative examples.

Reduction from a Graph to a Learning Sample (cont'd)

Consistent 3-term DNF as Graph Coloring (cont'd)

Let S be a sample obtained by reduction of graph (V, E). We will show:
(1) If (V, E) is 3-colorable then there is a 3-term DNF formula ϕ consistent with S
(2) If there is a 3 -term DNF formula ϕ consistent with S then (V, E) is 3-colorable

Colorability \Rightarrow Consistency

Assume vertices V are split in partitions R, B, Y (red, black, yellow) representing a valid coloring.

Consider 3-term DNF formula

$$
\phi=T_{R} \vee T_{B} \vee T_{Y}
$$

such that

$$
T_{R}=\bigwedge_{v_{i} \notin R} p_{i} \quad T_{B}=\bigwedge_{v_{i} \notin B} p_{i} \quad T_{Y}=\bigwedge_{v_{i} \notin Y} p_{i}
$$

We will show that ϕ is consistent with S reduced from graph (V, E).

Colorability \Rightarrow Consistency (cont'd)

Consistency with positive examples:
(1) One positive example $(x, 1)$ for each vertex v_{i}
(2) Assume $v_{i} \in R$ (B and Y are analogical)
(3) T_{R} does not contain p_{i} (by definition of T_{R})
(3) $x^{j}=1$ for $i \neq j$ (by reduction)
(0) x satisfies T_{R} (denote $x \models T_{R}$) (from 3 and 4)
(6) Therefore $x \models \phi$

Colorability \Rightarrow Consistency (cont'd)

Consistency with negative examples:
(1) One negative example $(x, 0)$ for each edge $e_{i j}$
(2) $x^{i}=0$ (by definition)
(3) v_{i} and v_{j} cannot both be red (because the coloring is valid)
(9) Assume v_{i} is not red
(3) $p_{i} \in T_{R}$ (by definition of T_{R})
(3) Therefore $x \not \models T_{R}$ (from 2 and 5)
(3) Analogically $x \not \models T_{B}$ and $x \not \models T_{Y}$ (repeat from Step 3 for the remaining colors)
(3) Therefore $x \not \models \neq$

Consistency \Rightarrow Colorability

Assume there is a consistent 3-term DNF ϕ, denote the 3 terms T_{R}, T_{B}, T_{Y} :

$$
\phi=T_{R} \vee T_{B} \vee T_{Y}
$$

This prescribes coloring:
for all positive examples $(x, 1)$ do
Let v_{i} be the vertex corresponding to x
if $x \vDash T_{R}$ then
color v_{i} red
else
if $x \models T_{B}$ then color v_{i} black
else
if $x \models T_{Y}$ then color v_{i} yellow

Consistency \Rightarrow Colorability (cont'd)

We prove that invalid coloring implies inconsistency of ϕ.
(1) Suppose the coloring is not valid.
(2) Then there are some adjacent v_{i} and v_{j} of same color, say red
(3) Let $\left(x_{i}, 1\right),\left(x_{j}, 1\right)$ and $\left(x_{i j}, 0\right)$ denote the examples corresponding to v_{i}, v_{j} and $e_{i j}$
(3) $x_{i}, x_{j} \models T_{R}$ (by coloring algorithm)
(3) $x_{i}^{i}=x_{j}^{j}=0$ (by reduction)
(2) T_{R} does not contain p_{i} or p_{j} (from 4 and 5)
(3) $x_{i j}^{k}=1$ for $k \notin\{i, j\}$ (by reduction)
(8) $x_{i j} \models T_{R}$ (from 5 and 7)
(9) Therefore $x_{i j} \models \phi$ but then ϕ is not consistent since $\left(x_{i j}, 0\right)$ is a negative example

3-term DNF not Efficiently PAC-Learnable

We proved that graph 3-coloring can be solved by linear-time reduction to a learning sample S and learning a 3-term DNF formula ϕ consistent with S.

Since graph 3-coloring is NP-hard, finding a consistent ϕ is also NP-hard.
Therefore $\mathcal{C}^{3 \text {-term DNF }}$ is not efficiently PAC-learnable by $\mathcal{C}^{3 \text {-term DNF }}$.

- This follows from the fact that inability to find a consistent hypothesis implies inability to PAC-learn (as we have already shown)

Can be also shown for any $\mathcal{C}^{k \text {-term DNF }, ~} k \geq 2$.

k-CNF and k-DNF

$\mathcal{C}^{k-C N F}$ contains conjunctions of k-disjunctions. Example:

$$
\left(p_{1} \vee p_{2}\right) \wedge\left(\neg p_{3} \vee p_{4} \vee p_{5}\right)
$$

belongs in $\mathcal{C}^{3-C N F}$.
$\mathcal{C}^{3-\text { DNF }}$ analogical, we continue with $\mathcal{C}^{3-C N F}$.
$\mathcal{C}^{k-C N F}$ is as easy to learn as monotone conjunctions:

- assign a new atom p_{i}^{\prime} to each clause that can be written with the original symbols p_{i}
- there is $\mathcal{O}\left(n^{k}\right)$ (i.e. poly number) of such clauses
- convert all examples into the new representation using symbols p_{i}^{\prime} (in poly time)
- learn a monotone conjunction with the new examples using symbols p_{i}^{\prime}
- convert it back to the original representation using symbols p_{i}

k-CNF vs. k-term DNF

Every k-term DNF formula can be written as an equivalent k-CNF formula. Example:

$$
\left(p_{1} \wedge p_{2}\right) \vee\left(p_{2} \wedge p_{3}\right) \equiv\left(p_{1} \vee p_{2}\right) \wedge\left(p_{1} \vee p_{3}\right) \wedge p_{2} \wedge\left(p_{2} \vee p_{3}\right)
$$

Thus $\mathcal{C}^{k \text {-term DNF }} \subseteq \mathcal{C}^{k-\mathrm{CNF}}$.

$$
\left.\begin{array}{c}
\left|\mathcal{C}^{k \text {-term DNF }}\right|=\mathcal{O}\left(2^{n}\right) \\
\left|\mathcal{C}^{k-\mathrm{CNF}}\right|=\mathcal{O}(2
\end{array}\binom{2 n}{k}\right)=\mathcal{O}\left(2^{n^{k}}\right) .
$$

So $\mathcal{C}^{k \text {-term DNF }} \subset \mathcal{C}^{k-C N F}$, thus not every k-CNF formula can be written as an equivalent k-term DNF formula.

Learning k-term DNF by k-CNF

Learning k-term DNF can be reduced to learning k-CNF. Assume examples in sample S contain values for n propositional variables.

- Create a new variable for each possible clause; there are $\mathcal{O}\left(n^{k}\right)$ of them
- Create a new sample S^{\prime} using the new variables computed from the original variables.
- Learn a monotone conjunction from S^{\prime}. Translating it back to the original variables yields a k-CNF formula

Since conjunctions are efficiently PAC-learnable, k-term DNF are efficiently PAC-learnable by $k-C N F$. (Caveat: Learning may produce a k-CNF formula not rewrittable into a k-term DNF formula.)

In general: a hypothesis class may not be efficiently PAC-learnable by itself, but may be efficiently PAC-learnable by a larger hypothesis class!

k-Decision Lists

A k-Decision list is an ordered set of conjunctive rules with at most k literals in each, and a default value.

Example of a 2-DL:

k-Decision Lists (cont'd)
For $\left|\mathcal{C}^{k-\mathrm{DL}}\right|$ we have

$$
\left|\mathcal{C}^{k-\mathrm{DL}}\right|=\mathcal{O}\left(3^{\mid \mathrm{C}^{k-\text { conj } j}}\left(\left|\mathcal{C}^{k-\text { conj }}\right|\right)!\right)
$$

(each conjunction in in the list can be either be absent, attached to 0 , or 1 , and the order in the list is arbitrary $)$. Therefore $\log \left(\left|\mathcal{C}^{k-D L}\right|\right)$ is polynomial in n, implying polynomial sample complexity.

Every k-DNF formula can be written as a k-Decision List

- every term T of the formula (in any order) forms one rule $T \rightarrow 1$
- default value is 0

Thus

$$
\mathcal{C}^{k-\mathrm{DNF}} \subseteq \mathcal{C}^{k-\mathrm{DL}}
$$

For every $c \in \mathcal{C}^{k-D L}$, also $\neg c \in \mathcal{C}^{k-D L}$ (revert values in leaves). Therefore also

$$
\mathcal{C}^{k-\mathrm{CNF}} \subseteq \mathcal{C}^{k-\mathrm{DL}}
$$

k-Decision Lists (cont'd)

$\mathcal{C}^{k-D L}$ is efficiently PAC-learnable (by $\mathcal{C}^{k-D L}$) with the covering algorithm
: $S=$ training sample, $D L=$ empty decision list
2: while $S \neq\{ \}$ do
3: $\quad \phi=$ any k-conjunction such that $\{(x, 0) \in S \mid x \models \phi\} \neq\{ \}$ and $\{(x, 1) \in S \mid x \models \phi\}=\{ \}$ or $\{(x, 0) \in S \mid x \vDash \phi\}=\{ \}$ and $\{(x, 1) \in S \mid x \models \phi\} \neq\{ \}$
4: add $\phi \rightarrow 0$ or $\phi \rightarrow 1$ (respectively) to $D L$
5: $\quad S=S \backslash\{(x, y) \in S|x|=\phi\}$
6: if $S=\{ \}$ then
7: \quad add default value 1 or 0 (respectively) to $D L$
8: return $D L$

Note: in Step 3 may go over all $\mathcal{O}\left(n^{k}\right) k$-conjunctions; heuristic search applicable as in learning k-conjunctions.

k-Decision Trees

A tree in which each path from the root to a leaf has length at most k and represents a rule. Each non-leaf vertex contains one propositional variable, each leaf a class value.

Example of a 3-decision tree:

k-Decision Trees (cont'd)

Any k-DT can be represented by a k-DNF:

- create one term for each path leading to a leaf labelled with " 1 "

Any k-DT can be represented by a k-CNF:

- create one clause for each path leading to a leaf labelled with " 0 "

Therefore

$$
\mathcal{C}^{k-\mathrm{DT}} \subseteq \mathcal{C}^{k-\mathrm{CNF}} \cap \mathcal{C}^{k-\mathrm{DNF}}
$$

Since $\mathcal{C}^{k-C N F} \neq \mathcal{C}^{k-\text { DNF }}$, we have $\mathcal{C}^{k-D T} \subset \mathcal{C}^{k-\text { CNF }}$ and $\mathcal{C}^{k-D T} \subset \mathcal{C}^{k-\text { DNF }}$ and since $\mathcal{C}^{k-C N F} \subseteq \mathcal{C}^{k-D L}$ we also have

$$
\mathcal{C}^{k-\mathrm{DT}} \subset \mathcal{C}^{k-\mathrm{DL}}
$$

k-Decision Trees (cont'd)

It is NP-hard to find a consistent k-Decision tree. $\mathcal{C}^{k \text {-DT }}$ is not efficiently PAC-learnable by $\mathcal{C}^{k-D T}$.

What is the error bound for an inconsistent tree? Remind: if

$$
m \geq \frac{1}{2 \epsilon^{2}} \ln \frac{2|\mathcal{F}|}{\delta}
$$

then classification error will not exceed training error by more than ϵ with at least $1-\delta$ probability.

Need to calculate $|\mathcal{F}|=\left|\mathcal{C}^{k-D T}\right|$

k-Decision Trees (cont'd)

$$
\left|\mathcal{C}^{1-\mathrm{DT}}\right|=2
$$

For depth $k+1$ we have n choices of the root variable, $\left|\mathcal{C}^{k-D T}\right|$ possible left subtrees and $\left|\mathcal{C}^{(k-D T}\right|$ possible right subtrees.

$$
\left|\mathcal{C}^{(k+1)-\mathrm{DT}}\right|=n \cdot\left|\mathcal{C}^{k-\mathrm{DT}}\right|^{2}
$$

Denote $l_{k}=\log _{2}\left|\mathcal{C}^{k-D T}\right|$

$$
\begin{aligned}
l_{1} & =1 \\
l_{k+1} & =\log _{2} n+2 l_{k}
\end{aligned}
$$

Solution:

$$
l_{k}=\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1
$$

I.e. $\ln \left|\mathcal{C}^{k \text {-DT }}\right|$ polynomial in n (and exponential in k).

k-leave Decision Trees

Altnernatively, we may bound the number of leaves.
$\mathcal{C}^{k \text {-leave DT }}$: trees with at most k leaves.
Finding a consistent k-leave DT still NP-hard. $\mathcal{C}^{k \text {-leave DT }}$ not efficiently PAC-learnable with $\mathcal{C}^{k \text {-leave DT }}$.

Error bound for an inconsistent tree? Size of the concept space:

$$
\left|\mathcal{C}^{k \text {-leave DT }}\right| \leq n^{k-1}(k+1)^{(2 k-1)}
$$

Provides better bound than in k-DT: $\ln \left|\mathcal{C}^{k \text {-leave DT }}\right|$ polynomial in both n and k.

TDIDT algorithm

A recursive heuristic algorithm for quick (poly-time) construction of a possibly inconsistent DT .

TDIDT(S: sample, $P=\left\{p_{1}, \ldots, p_{n}\right\}$: propositional variables)
if all examples in S have same class y then return vertex labeled y
else
if $P=\{ \}$ then
return vertex labeled by the majority class in S
else
Choose $p_{i} \in P$ and create a vertex labeled p_{i}
for $v \in\{0,1\}$ do
Create an edge from the p_{i} vertex, label it v $S^{\prime}=\left\{(x, y) \in S \mid x^{i}=v\right\}$ if $S^{\prime}=\{ \}$ then
add a leaf to edge v, label it by the majority class in S else
add $\operatorname{TDIDT}\left(S^{\prime}, P \backslash p_{i}\right)$ to edge v

TDIDT algorithm: remarks

- The heuristic in Choose $p_{i} \in P$

Define $S_{i}=\left\{(x, y) \mid x \models p_{i}\right\}$. Usually we choose p_{i} maximizing

$$
\Delta H\left(S, p_{i}\right)=H(S)-\frac{\left|S_{i}\right|}{S} H\left(S_{i}\right)-\frac{\left|S \backslash S_{i}\right|}{S} H\left(S \backslash S_{i}\right)
$$

where entropy $H(S)$ is defined as

$$
H(S)=-\sum_{y \in\{0,1\}} \frac{|\{(x, y) \in S\}|}{|S|} \log _{2} \frac{|\{(x, y) \in S\}|}{|S|}
$$

Remarks

- TDIDT easily adaptable to constructing k-DT

Condition $P=\{ \}$ is replaced by $P=\{ \}$ or current depth $=k$

- TDIDT and other logic-based learners applicable also non-Boolean classification

TDIDT: No change in code needed. Decision lists: use multiple target values instead of 0 and 1 , covering strategy remains same.

- TDIDT and other logic-based learners easily adaptable to nominal features

TDIDT: Instead of going over the Boolean range $v \in\{0,1\}$, we go over all possible values of the nominal feature x^{i}. Other learners: pre-construct Boolean features from nominal features (similarly to what follows).

Remarks (cont'd)

- TDIDT and other logic-based learners easily adaptable to real-valued features

Use pre-constructed Boolean features such as p :

$$
p \text { is true iff } x^{i}>153.56
$$

where x^{i} is an original real-valued feature and the threshold value 153.56 is determined in a preprocessing step. Multiple thresholds for one real-valued feature may be considered and used to define multiple Boolean features.

Discretization: 3 General Approaches

- Equilength intervals

- Equiprobable intervals

- Intervals containing same-class examples (most popular)

Inconsistent Hypotheses

Remind: when $\mathcal{C} \nsubseteq \mathcal{F}$ or $P_{Y \mid X}$ is not a concept, we must learn inconsistent hypotheses. Then we do not PAC-learn but we still have error bounds:

- Training error vs. classification error bound

$$
|e(f)-e(S, f)| \leq \sqrt{\frac{1}{2 m} \ln \frac{2|\mathcal{F}|}{\delta}}
$$

does not assume the learner minimizes training error, i.e. that it outputs $\arg \min _{f \in \mathcal{F}} e(S, f)$

- Classification error of learned vs. best hypothesis bound

$$
e(f) \leq\left(\min _{f \in \mathcal{F}} e(f)\right)+2 \sqrt{\frac{1}{2 m} \ln \frac{2|\mathcal{F}|}{\delta}}
$$

assumes the learner minimizes training error. This may be difficult.

Consistency vs. Error Minimization

Class	Find $f, e(S, f)=0$	Find $\arg \min _{f \in \mathcal{F}} e(S, f)$
k-DT, k-leave DT	NP-hard	NP-hard
any \mathcal{C} where $\|\mathcal{C}\|$ poly	easy	easy
. such as k-conjunctions	easy	easy
general conjunctions	easy	NP-hard

Minimizing $e(S, f)$ for general conjunctions can be reduced to the NP-hard vertex-cover graph problem.

