Machine Learning and Data Analysis Lecture 9: Infinite Hypothesis Spaces

Filip Železný

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Intelligent Data Analysis lab http://ida.felk.cvut.cz

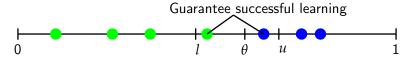
January 10, 2011

PAC Learning Summary

Concept class (efficiently) PAC learnable by a hypothesis class if

- a consistent hypothesis can be (efficiently) produced for each sample
- size of hypothesis space at most exponential

Two weeks ago we proved PAC-learnability of threshold hypotheses on $\left[0;1\right]$



Here PAC-learnability does not follow from the above principle since there are ∞ threshold hypotheses. Can we extend the above principle to cover infinite hypothesis classes?

An Intuitive Approach

Assume θ has finite precision, say 64 bits. In a digital machine, this is the case anyway.

For threshold hypotheses on [0,1]:

$$\ln |\mathcal{Q}| = \ln |2^{64}| = 64 \ln 2$$

For threshold hypotheses

$$q(x) = 1 \text{ iff } \theta_1 x^{(1)} + \theta_2 x^{(2)} > 0$$

on $[0,1]^2$:

$$\ln |\mathcal{Q}| = \ln |2^{2 \cdot 64}| = 128 \ln 2$$

Generally for hypothesis classes with n parameters

$$\ln |\mathcal{Q}| = \ln |2^{64n}| = 64n \ln 2 = \mathcal{O}(n)$$

An Intuitive Approach (cont'd)

 $\ln |\mathcal{Q}|$ linear in number of hypothesis-class parameters and precision of real-number representation

Approach seems viable, allows PAC-learning

Problem:

$$\begin{array}{ll} \mathcal{Q}_1 \colon & q(x) = 1 \text{ iff } \theta_1 x^{(1)} + \theta_2 x^{(2)} > 0 & 2 \text{ parameters} \\ \mathcal{Q}_2 \colon & q(x) = 1 \text{ iff } |\theta_1 - \theta_2| x^{(1)} + |\theta_3 - \theta_4| x^{(2)} > 0 & 4 \text{ parameters} \end{array}$$

Different number of parameters but $Q_1 = Q_2!$

Instead of the number of parameters and precision, we will build a different characterization of infinite hypothesis classes.

$\Pi_{\mathcal{Q}}$ function

A finite sample from p_X will be called an *x-sample*.

• x_1, x_2, \ldots instead of $(x_1, k_1), (x_2, k_2), \ldots$

Remind the set-notation we earlier introduced for hypotheses:

• $x \in q$ means the same as q(x) = 1

$\Pi_{\mathcal{Q}}$ function

For any X and $\mathcal Q$ and a finite x-sample S define

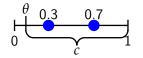
$$\Pi_{\mathcal{Q}}(S) = \{ q \cap S \mid q \in \mathcal{Q} \}$$

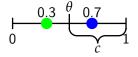
We call $q\cap S$ a labelling on S. $\Pi_{\mathcal{Q}}(S)$ gives all labellings of S possible with hypotheses from \mathcal{Q}

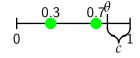
$\Pi_{\mathcal{Q}}$ function: Example

Let $\mathcal Q$ be threshold hypotheses on [0,1] and $S=\{0.3,0.7\}$

$$\Pi_{\mathcal{Q}}(S) = \{\{0.3, 0.7\}, \{0.7\}, \{\}\}\}$$

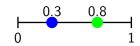






but

$$\{0.3\} \not\in \Pi_{\mathcal{Q}}(S)$$



Shattering

Shattering

If $|\Pi_{\mathcal{Q}}(S)| = 2^{|S|}$ then S is shattered by \mathcal{Q} .

S is shattered by $\mathcal Q$ if for any subset $S'\subseteq S$ there is a hypothesis $q\in\mathcal Q$ such that $q\cap S=S'$.

Example: let $\mathcal Q$ be threshold hypotheses on [0,1]

- ullet $\{0.3\}$ and $\{0.7\}$ are shattered by ${\cal Q}$
- ullet $\{0.3, 0.7\}$ is not shattered by ${\cal Q}$

VC Dimension

VC Dimension

The *Vapnik-Chervonenkis* dimension of \mathcal{Q} , denoted $\mathcal{V}(\mathcal{Q})$, is the largest d such that some x-sample of cardinality d is shattered by \mathcal{Q} . If no such d exists, then $\mathcal{V}(\mathcal{Q}) = \infty$.

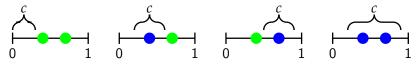
Example: let $\mathcal Q$ be threshold hypotheses on [0,1]

- ullet $\{0.3\}$ is shattered by ${\cal Q}$
- No x-sample S of cardinality 2 is shattered by $\mathcal Q$ because $\{\min S\}\subseteq S$, but $S\cap q=\{\min S\}$ for no $q\in \mathcal Q$.
- Since no x-sample of cardinality 2 is shattered, no x-sample of cardinality > 2 is shattered
- Therefore $\mathcal{V}(\mathcal{Q}) = 1$.

Let Q be intervals [a, b], 0 < a, b < 1

- ullet $\{0.3, 0.7\}$ is shattered by ${\cal Q}$
- No *x*-sample of cardinality 3 or higher is shattered by \mathcal{Q} because $\{\min S, \max S\} \subseteq S \text{ but } S \cap q = \{\min S, \max S\} \text{ for no } q \in \mathcal{Q}.$
- Therefore $\mathcal{V}(\mathcal{Q})=2$.

Two points shattered



No three points can be shattered, the middle one can never be left out

Let Q be unions of k disjoint intervals [a, b]

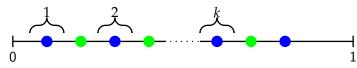
- ullet An x-sample of 2k elements shattered by ${\cal Q}$
- No x-sample of cardinality 2k+1 or higher is shattered by \mathcal{Q} . Let $S=\{x_1,x_2,\ldots,x_{2k+1}\}$ such that $x_i < x_j$ for i < j. Then for

$$S' = \{x_1, x_3, \dots x_{2k+1}\}$$

 $S' \subseteq S$ but $S' = S \cap c$ for no $q \in \mathcal{Q}$.

• Therefore $\mathcal{V}(\mathcal{Q}) = 2k$.

No 2k+1 points can be shattered

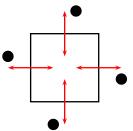


Let Q be half-planes in R^2

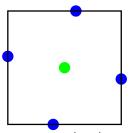
- Some 3 points can be shattered (obvious)
- No 4 points can be shattered. Clear if three of them in line. If not, then two cases possible, and impossible labelling exists in each:

- V(Q) = 3
- similarly shown: $V(\text{circles in } R^2) = 3$
- Generally, $\mathcal{V}(\mathsf{half-planes}\;\mathsf{in}\;R^n)=n+1$

Let Q be rectangles in R^2



Some four points can be shattered



Five can never be shattered

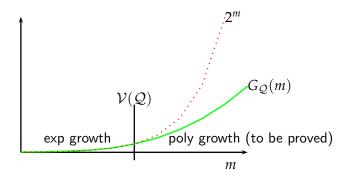
- $\mathcal{V}(\mathcal{Q}) = 4$
- More generally, $\mathcal{V}(\mathsf{convex}\ \mathsf{tetragons}) = 9$
- More generally, V(convex d-gons)=2d+1

Function G_Q

Function G_Q

$$G_{\mathcal{Q}}(m) = \max\{|\Pi_{\mathcal{Q}}(S)| : |S| = m\}$$

For a given m, $G_{\mathcal{Q}}(m)$ returns the maximum number of ways an x-sample of size m can be labeled by hypotheses from \mathcal{Q} .



Function $\Phi(k,m)$

Define:

$$\Phi(k,m) = \sum_{i=0}^{k} \binom{m}{i} = \begin{cases} 1 \text{ if } k = 0 \text{ or } m = 0\\ \Phi(k,m-1) + \Phi(k-1,m-1) \end{cases}$$

The second equality may be shown by induction ('Pascal's triangle').

For m > k, it holds $0 \le k/m < 1$ and

$$\left(\frac{k}{m}\right)^k \sum_{i=0}^k \binom{m}{i} \le \sum_{i=0}^k \left(\frac{k}{m}\right)^i \binom{m}{i}$$

$$\le \sum_{i=0}^m \left(\frac{k}{m}\right)^i \binom{m}{i} = \left(1 + \frac{k}{m}\right)^m \le e^k$$

Dividing by $\left(\frac{k}{m}\right)^k$, we get that $\Phi(k,m)$ grows polynomially in m

$$\Phi(k,m) \le e^k \left(\frac{m}{k}\right)^k \le \left(\frac{me}{k}\right)^k$$

We prove the polynomial bound

$$G_{\mathcal{Q}}(m) \leq \Phi\left(\mathcal{V}(\mathcal{Q}), m\right)$$

by induction on m and $\mathcal{V}(\mathcal{Q})$.

Base case:

• if m=0 then

$$G_{\mathcal{Q}}(0) = 1 = \Phi(\mathcal{V}(\mathcal{Q}), 0)$$

since there is only one subset of $\{\}$.

• if $\mathcal{V}(\mathcal{Q}) = 0$ then

$$G_{\mathcal{Q}}(m) = 1 = \Phi(0, m)$$

since if only $\{\}$ can be shattered then all points in any x-sample must be labeled the same by any $q \in \mathcal{Q}$.

Induction step (assume an arbitrary S with m elements):

$$|\Pi_{\mathcal{Q}}(S)| = |\Pi_{\mathcal{Q}}(S \setminus \{x\})| + |\Delta \mathcal{S}|$$

where by definition of the G function (slide 13) and then by the induction assumption

$$|\Pi_{\mathcal{Q}}(S \setminus \{x\})| \le G_{\mathcal{Q}}(m-1) \le \Phi(\mathcal{V}(\mathcal{Q}), m-1) \tag{1}$$

What about the difference term $|\Delta S|$?

- For all $s \in \Pi_{\mathcal{Q}}(S \setminus \{x\})$, there is 1 corresponding labelling
- For some $s \in \Pi_{\mathcal{Q}}(S \setminus \{x\})$, there are 2 corresponding labellings

Thus ΔS should include exactly the $s \in \Pi_{\mathcal{Q}}(S \setminus \{x\})$ that have 2 corresponding labellings in $\Pi_{\mathcal{Q}}(S)$.

Therefore:

$$\Delta S = \{ s \in \Pi_{\mathcal{Q}}(S) \mid x \notin s, \ s \cup \{x\} \in \Pi_{\mathcal{Q}}(S) \}$$

Note that

$$\Delta S = \Pi_{\Delta S}(S \setminus \{x\})$$

 (ΔS) in the subscript acts as a hypothesis class, which is OK!)

Illustrative example with $Q = \{q \mid q(x) = 1 \text{ iff } x < \theta, \theta \in [0,1]\}$:

- $S = \{0.1, 0.2, 0.3\}, x = 0.3$
- $\Pi_{\mathcal{Q}}(S) = \{\{\}, \{0.1\}, \{0.1, 0.2\}, \{0.1, 0.2, 0.3\}\}$
- $\Pi_{\mathcal{Q}}(S \setminus \{x\}) = \{\{\}, \{0.1\}, \{0.1, 0.2\}\}$
- $\Delta S = \{\{0.1, 0.2\}\}$
- $\Pi_{\Delta S}(S \setminus \{x\}) = \Pi_{\{\{0.1,0.2\}\}}(\{0.1,0.2\}) = \{0.1,0.2\} = \Delta S$

What about $V(\Delta S)$?

- **1** Remind definition: $\Delta S = \{ s \in \Pi_{\mathcal{Q}}(S) \mid x \notin s, \ s \cup \{x\} \in \Pi_{\mathcal{Q}}(S) \}$
- \bullet $\Delta S \subseteq \Pi_{\mathcal{O}}(S)$ (from 1).
- **③** Let T be a sample shattered by ΔS .
- $x \notin T$ (from 3 and 1)
- $|T \cup \{x\}| = |T| + 1 \text{ (from 4)}$
- For all $t \subseteq T$, $t \in \Delta S$ (from 3)
- **②** For all $t \subseteq T$, $t \in \Pi_{\mathcal{Q}}(S)$ (from 6 and 2)
- **§** For all t ⊆ T, $t ∪ \{x\} ∈ Π_Q(S)$ (from 6 and 1)
- **9** \mathcal{Q} shatters $T \cup \{x\}$ (from 3,7, and 8)

Remind that

$$\Delta \mathcal{S} = \Pi_{\Delta \mathcal{S}}(S \setminus \{x\})$$

by definition of the G function (slide 13)

$$|\Pi_{\Delta S}(S \setminus \{x\})| \le G_{\Delta S}(m-1)$$

we proved that

$$V(\Delta S) \le V(Q) - 1$$

by induction assumption

$$G_{\Delta S}(m-1) \leq \Phi(\mathcal{V}(\mathcal{Q})-1, m-1)$$

SO

$$|\Delta S| = |\Pi_{\Delta S}(S \setminus \{x\})| \le \Phi(\mathcal{V}(\mathcal{Q}) - 1, m - 1) \tag{2}$$

Returning to the induction step:

$$|\Pi_{\mathcal{Q}}(S)| = |\Pi_{\mathcal{Q}}(S \setminus x)| + |\Delta \mathcal{S}|$$

We have proved (Eq. 1 and Eq. 2):

$$|\Pi_{\mathcal{Q}}(S \setminus \{x\})| \le \Phi(\mathcal{V}(\mathcal{Q}), m-1)$$
$$|\Delta \mathcal{S}| \le \Phi(\mathcal{V}(\mathcal{Q}) - 1, m-1)$$

Using the above and the definition of Φ (slide 14) we have

$$|\Pi_{\mathcal{Q}}(S)| \leq \Phi(\mathcal{V}(\mathcal{Q}), m-1) + \Phi(\mathcal{V}(\mathcal{Q}) - 1, m-1) = \Phi(\mathcal{V}(\mathcal{Q}), m)$$

Since S was arbitrary, we proved the polynomial bound for $G_{\mathcal{Q}}(m)$:

$$G_{\mathcal{Q}}(m) \leq \Phi(\mathcal{V}(\mathcal{Q}), m)$$

Error regions

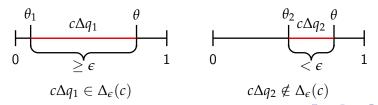
Denote $c\Delta q = \{x \in X \mid c(x) \neq q(x)\}$ and define for $c \in C$, $\epsilon \in R$:

$$\Delta_{\epsilon}(c) = \{c\Delta q \mid q \in \mathcal{Q}, \sum_{x \in c\Delta q} p_X(x) \ge \epsilon\}$$

Notes:

- Replace \sum by \int for continuous X
- ullet $\Delta_{\epsilon}(c)$ does not have ${\cal Q}$ in the subscript but it depends on it!

Example for a treshold concept c (with threshold θ) and $\epsilon = 0.5$, with $Q = \{q_1, q_2\}$ (thresholds θ_1, θ_2), assuming uniform p_X :



Error regions

Note that for any Q, any $c \in C$ and any x-sample S

$$\Pi_{\mathcal{Q}}(S) = \{ q \cap S \mid q \in \mathcal{Q} \}$$

$$\Pi_{\Delta_0(c)}(S) = \{ (c\Delta q) \cap S \mid q \in \mathcal{Q} \}$$

There is a bijective mapping

$$q \cap S \Leftrightarrow (c\Delta q) \cap S$$

between $\Pi_{\mathcal{Q}}(S)$ and $\Pi_{\Delta_0(c)}(S)$. Thus

$$|\Pi_{\Delta_0(c)}(S)| = |\Pi_{\mathcal{Q}}(S)|$$

and therefore

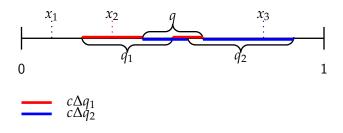
$$\mathcal{V}(\Delta_0(c)) = \mathcal{V}(\mathcal{Q})$$

We will need this observation later. (Remind: $\mathcal{V}(\Delta_0(c))$ depends on $\mathcal{Q}!$)

ϵ -net

For any $e \in R$, an x-sample S is an e-net for a concept $c \in \mathcal{C}$ and hypothesis class \mathcal{Q} if every region $r \in \Delta_e(c)$ contains a point from S, i.e $r \cap S \neq \{\}$.

Example for interval hypotheses, with $Q = \{q_1, q_2\}$:



 $\{x_1, x_2\}$ is not an ϵ -net. $\{x_2, x_3\}$ is an ϵ -net. $\{x_1, x_2, x_3\}$ is an ϵ -net.