
Machine Learning and Data Analysis
Lecture 12: Learning in Predicate Logic

Filip Železný

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics
Intelligent Data Analysis lab

http://ida.felk.cvut.cz

January 11, 2011

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 1 / 26

Review of PAC-learning in Propositional Logic

In propositional logic, we have proved the following classes PAC learnable:

Conjunctions and disjunctions on n propositional symbols

k-conjunctions and k-disjunctions
◮ contain at most k literals
◮ |Qk-conj| = |Qk-disj| = O(nk)

k-CNF and k-DNF
◮ Conjunctions of clauses (k-disjunctions), resp. disjunctions of terms

(k-conjunctions)
◮ Poly number of O(nk) different possible clauses (terms), so k-CNF and

k-DNF as easy as conjunctions (disjunctions)

k-term DNF and k-clause CNF
◮ by k-CNF, resp. k-DNF, not by themselves!

k-Decision lists

What about learnability in predicate logic?

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 2 / 26

Review of First-Order Predicate Logic Syntax

∀x human(father(x)) → ¬species(x, dinosaur)

variable
function
of arity 1

constant
(function
of arity 0)

term

atom atom

quantifier connective

predicate
of arity 1

predicate
of arity 2

Functions can be nested, e.g. father(father(. . . father(x) . . .)).

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 3 / 26

Operator precedence

To avoid too many parentheses, we set the following operator precedence

1 negation ¬

2 conjunction ∧

3 disjunction ∨

4 implication →

5 quantifiers ∃, ∀

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 4 / 26

CNF Representation

Any first-order formula can be converted into a CNF, which is a
conjunction of universally quantified clauses = clausal theory

Example:

∀x person(x) → ∃y parent(y, x) ∧ ¬ (mother(y, x) ∧ father(y, x))

rewrite (note precedence of ∧ over ∨):

∀x ¬person(x) ∨ ∃y parent(y, x) ∧ ¬ (mother(y, x) ∧ father(y, x))

move negation straight to atoms:

∀x ¬person(x) ∨ ∃y parent(y, x) ∧ (¬mother(y, x) ∨ ¬father(y, x))

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 5 / 26

CNF Representation (cont’d)

skolemize:

∀x ¬person(x) ∨ parent(par(x), x)∧

(¬mother(par(x), x) ∨ ¬father(par(x), x))

use the distribution principle a∨ (b∧ c) ≡ (a∨ b) ∧ (a∨ c)

∀x (¬person(x) ∨ parent(par(x), x))∧

(¬person(x) ∨ ¬mother(par(x), x) ∨ ¬father(par(x), x))

Drop universal quantifiers since all variables are now quantified universally.

(¬person(x) ∨ parent(par(x), x))∧

(¬person(x) ∨ ¬mother(par(x), x) ∨ ¬father(par(x), x))

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 6 / 26

CNF Representation (cont’d)

Rewrite as a set of clauses (implicitly connected by ∧).

For readability, use the principle ¬a∨ b ≡ a → b

person(x) → parent(par(x), x)

person(x) ∧mother(par(x), x) ∧ father(par(x), x) → ⊥

⊥ is logical contradiction (‘false’).

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 7 / 26

Positive and Negative Literals

For any clause C with literals li (1 ≤ i ≤ j+ k)

C =¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lj
︸ ︷︷ ︸

negative literals

∨ lj+1 ∨ lj+2 ∨ . . . ∨ lj+k
︸ ︷︷ ︸

positive literals

= l1 ∧ l2 ∧ . . . ∧ lj
︸ ︷︷ ︸

negative literals

→ lj+1 ∨ lj+2 ∨ . . . ∨ lj+k
︸ ︷︷ ︸

positive literals

denote

C− = {l1, . . . lj} (the set of atoms appearing as negative literals in C)

C+ = {lj+1, . . . lj+k} (those appearing as positive literals in C)

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 8 / 26

Substitution

A substitution is a mapping from a set of variables to terms.

Example
ϑ = {x 7→ x, y 7→ x, z 7→ f(x, a)}

Example of applying a substitution:

C = p(w, x, y) → q(z, a)

Cϑ = p(w, x, x) → q(f(x, a), a)

C−ϑ = {p(w, x, x)}

A ground formula (or a set of atoms) is a formula (set of atoms)
containing no variables.

A grounding substitution for a formula (or a set of atoms) φ is a
substitution ϑ such that φϑ is ground.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 9 / 26

Herbrand Interpretation and Model

Generalization of truth-value assignment in propositional logic.

Let P be a finite set of predicates and F be finite set of functions
(including constants).

Herbrand base H: set of all atoms that can be constructed with P and F
(may be infinite)

Herbrand interpretation I: a subset of H. (We will omit ‘Herbrand’.)

A clause C is true in I if for any grounding substitution ϑ for C

C+ϑ ∩ I 6= {} whenever C−ϑ ⊆ I

An interpretation I is model of a clausal theory T if all clauses of T are
true in I; we write

I |= T

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 10 / 26

Interpretations and Models: Examples
Consider the clausal theory:

edge(x, y) →path(x, y)

edge(x, z) ∧ path(z, y) →path(x, y)

The following interpretations are two of its models

Herbrand: Non-Herbrand (informal):

{edge(a, b), edge(b, c),

path(a, b), path(b, c), path(a, c)}

{edge(a, b), edge(b, c), edge(c, a)

path(a, a), path(a, b), path(a, c),

path(b, a), path(b, b), path(b, c)

path(c, a), path(c, b), path(c, c)}

a b c

a

b

c

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 11 / 26

Range-Restricted jk-theories

Clause C is

range-restricted if all variables in C+ appear also in C−.

a jk-clause if it contains at most k literals and each of them contains
at most j occurences of predicate, variable and function symbols

Example:
son(x, y) ∧ brother(y, z) → uncle(z, x)

is a range-restricted 3, 3-clause, but not e.g. a range-restricted 3, 2-clause.

A range-restricted jk-theory is a set of range-restricted jk-clauses.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 12 / 26

Learning Range-Restricted jk-Theories
Given finite sets P,F of predicate/function symbols, observation space X
contains finite interpretations x on the Herbrand base constructed with P
and F. The size of examples is given by the triple

|P|, |F|,n = max{|x| | x ∈ X}

Hypothesis space Qjk =

{qT | T is a range restricted jk-theory using only symbols from P and F}

qT(x) = 1 iff x |= T

To see if Qjk is efficiently PAC-learnable, we will determine if

ln |Qjk| is polynomial.

a consistent qT can be produced for any sample S = {x1, . . . xm} in
polynomial time.

polynomial: in 1/δ, 1/ǫ, |P|, |F|, n
Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 13 / 26

Cardinality of Qjk

With l different literals

c =
k

∑
i=1

(
l
i

)

= O(lk)

different clauses containing at most k literals can be constructed.

Atoms can be constructed with |P| different predicate symbols.

With maximum atom size j, an atom has at most j− 1 places for function
or variable symbols (exactly one place occupied by the predicate symbol).

There are |F| different function symbols. Since any jk-theory contains at
most jk variables, there are jk different variable symbols.

So |P|(|F|+ jk)j−1 different atoms, i.e. l = 2|P|(|F|+ jk)j−1 different
literals can be used to form clauses.

Therefore c is polynomial in |P| and |F| and so is ln |Qjk| = ln |2c|.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 14 / 26

Consistent qT

A qT consistent with a sample S is produced by a generalization algorithm.

φ = ∧c′

i=1Ci {conjunction of all range-restricted jk-clauses formed using
P, F and jk different variables}
for each example (x, 1) ∈ S do

for i = 1 . . . c′ do

if x 2 Ci then

delete Ci from φ

return φ

Number c from the previous slide considered all jk-clauses, not only those
range-restricted, so c′ ≤ c.

Similar to the generalization algorithm for learning propositional
conjunctions. Also here only positive examples (interpretations) are used.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 15 / 26

Efficiency of the Generalization Algorithm

The algorithm makes mc′ steps (m = |S|) where c′ is polynomial, i.e.
polynomial number of steps.

It needs polynomial time if each step takes polynomial time, i.e. if
checking x |= C for interpretation x and a range-restricted jk-clause C
takes polynomial time.

Checking x |= Ci requires

1 finding all substitutions ϑ so that C−ϑ ⊆ x

2 checking if C+ϑ ∩ x 6= {} for each such ϑ

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 16 / 26

Finding ϑ so that C−ϑ ⊆ x

A tree-search

Example: C− = {p(x, y), q(y, z)}, x = {p(a, b), p(b, c), q(b, c), q(b, d)}

p(x, y)

q(y, z)ϑ1 = q(b, z)

ϑ1 = {x 7→ a, y 7→ b}

q(y, z)ϑ2 = q(c, z)

ϑ2 = {x 7→ b, y 7→ c}

q(b, z)ϑ11 = q(b, c)

ϑ11 = {z 7→ c}

q(b, z)ϑ12 = q(b, d)

ϑ12 = {z 7→ d}

Solutions:

ϑ = ϑ1 ∪ ϑ11 = {x 7→ a, y 7→ b, z 7→ c}

ϑ = ϑ1 ∪ ϑ11 = {x 7→ a, y 7→ b, z 7→ d}

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 17 / 26

PAC-learnability of Qjk

The tree has depth at most k and branching factor at most n (maximum
size of interpretation x).

Thus it has at most nk vertices.

The atom in each vertex has at most j arguments so the tree can be
searched in O((jn)k) units of time.

For each resulting ϑ, C+ϑ ∩ x 6= {} can be checked in O(jn) units of time
since C is range-restricted and thus C+ϑ is ground.

Therefore, checking x |= Ci takes polynomial time.

In summary, the generalization algorithm runs in time polynomial in
|P|, |F|,n.

Since also ln |Qjk| is polynomial in |P| and |F|, Qjk is efficiently
PAC-learnable.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 18 / 26

Expressivness of Qjk

Q1k = Qk-CNF (propositional k-CNF), but for j > 1, Qjk is much more
expressive. For example, the concept of a directed path in a graph can be
(recursively) expressed in Q3,3:

edge(x, y) →path(x, y)

edge(x, z) ∧ path(z, y) →path(x, y)

the concept be efficiently PAC-learned from example interpretations such
as

{edge(a, b), edge(b, c),

path(a, b), path(b, c), path(a, c)}

{edge(a, b), edge(b, c), edge(c, a)

path(a, a), path(a, b), path(a, c),

path(b, a), path(b, b), path(b, c)

path(c, a), path(c, b), path(c, c)}

a b c

a

b

c

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 19 / 26

Inductive Logic Programming
The concept can be written as a Prolog program:

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Thus algorithms for learning in predicate logic allow to induce (= learn)
some Prolog programs from examples.

Therefore they are called algorithms of inductive logic programming (ILP).
ILP has applications in problems where hypotheses are learned from
structured data such as in biochemistry

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 20 / 26

Learning from Intepretations

The learning principles explained so far are referred to as the ILP setting of
learning from (finite) interpretations.

Some concepts have only infinite models. E.g.

even(s(s(0)))

even(x) → even(s(s(x)))

(the unary function s produces the successor of its argument)

so they cannot be learned from finite interpretations.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 21 / 26

Learning from Clauses

An alternative setting of ILP is known as learning from clauses or learning
from entailment.

Here x ∈ X are first-order predicate clauses and Q contains hypotheses qT
in the form of first-order clausal theories T such that

qT(x) = 1 iff T ⊢ x

where the ⊢ is the logical entailment relation. T ⊢ x holds iff all models of
T are also models of x. For example:

human(Sokrates)
human(x) → mortal(x)

⊢ mortal(Sokrates)

Samples S from X are assumed non-contradictory, i.e. no positive
(negative) example entails a negative (positive) example.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 22 / 26

Learning from Clauses: Example

Consider sample S containing the following positive examples

x1 =even(s(s(s(s(s(s(0)))))))

x2 =even(s(s(x))) → even(s(s(s(s(x)))))

and the negative example

x3 =even(s(s(x)))

Then the intended hypothesis qT

even(s(s(0)))

even(x) → even(s(s(x)))

is consistent with S (T ⊢ x1, T ⊢ x2, T 0 x3), which can be shown e.g. by
resolution. So can we learn from clauses what we cannot learn from
interpretations?

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 23 / 26

Learning from Clauses: Problems
Main problems causing the inability to PAC-learn general clausal theories
from clauses.

1 Infinite VC-dimension. General clausal theories have the expressive
power of a Turing machine. Any (finite) sample S can be shattered
e.g. by the trivial theory

S = ∧ixi

where xi are clauses taken from the positive examples of S. This
problem can be avoided by making Q finite, for example Q = Qjk.

2 Undecidability of entailment

T ⊢ x

is generally unecidable (even if T is a single clause)
This makes it impossible to verify if a hypothesis is consistent with a
sample, therefore finding a consistent hypothesis is also generally
impossible.

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 24 / 26

ϑ-Subsumption

If T is a single clause, T ⊢ x can be approximated by the ϑ-subsumption

relation ¹ϑ.

T ¹ϑ x holds iff there is a substitution ϑ such that all literals of Tϑ are
also in x.

Checking ϑ-subsumption decidable but NP-complete. Maximum size of
the two clauses must be fixed for efficient checking.

Example:

T =path(x, z) ∧ edge(z, y) → path(x, y)

x =path(x, a) ∧ edge(a, y) ∧ edge(b, y) → path(x, y)

Here both T ⊢ x and T ¹ϑ x (for ϑ = {z 7→ a})

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 25 / 26

ϑ-Subsumption (cont’d)

However, in:

T =p(x, y, z) → p(y, z, x)

x =p(x, y, z) → p(z, x, y)

T ⊢ x (can be checked by resolving T with T) but T ±ϑ x.

ϑ-Subsumption is an approximation to entailment in that

T ¹ϑ x implies T ⊢ x

T ⊢ x implies T ¹ϑ x only if T and x are not self-resolving

Filip Železný (ČVUT) Learning in Predicate Logic January 11, 2011 26 / 26

