Machine Learning and Data Analysis Lecture 11: Empirical Validation of Hypotheses

Filip Železný

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Intelligent Data Analysis lab http://ida.felk.cvut.cz

February 17, 2011

Risk Estimates

Remind: we want to learn f which minimizes risk R(f).

Estimates of $R(f)$	theoretical a function of properties such as m , $\mathcal{V}(\mathcal{F})$, δ	empirical a number computed for a particular sample and learner	
worst-case an <i>upper bound</i> on $R(f)$	PAC-theory	not interesting	
average-case the expected value of $R(f)$	not available	this lecture	

Theoretical: reveal relationships, useful for the design of learning algorithms or experiments.

Expected-case: useful in applications of existing algorithms.

Risk Estimator

Let $\mathcal S$ be a set of possible i.i.d samples. Let $L:\mathcal S\to\mathcal F$ be a (deterministic) learning algorithm.

A risk estimator takes L and S and produces a number $\hat{R}(L,S)$ that should approximate R(L(S)), i.e. minimize

$$\mathbf{E}_{\mathcal{S}}[(R(L(S)) - \hat{R}(L,S))^2]$$

Since S is drawn randomly, L(S) is random, and thus R(L(S)) and $\hat{R}(L,S)$ are also random.

The expectation is over a probability distribution $P_{\mathcal{S}}$ on samples.

For a fixed |S| = m, P_S can be derived from P_X .

Our subsequent analyses of estimators will relate to any $P_{\mathcal{S}}$ so we do not need to specify it.

Bias and Variance of Risk Estimates

For clarity, denote $f^S \equiv L(S)$ and $\hat{R} \equiv \hat{R}(L,S)$.

The error of an estimator can be decomposed into two components:

Bias:

$$\mathsf{bias}(\hat{R}) = \mathbf{E}_{\mathcal{S}}[\hat{R} - R(f^S)]$$

Variance:

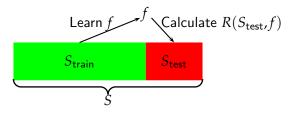
$$\mathsf{var}(\hat{R}) = \mathbf{E}_{\mathcal{S}}[\left(\mathbf{E}_{\mathcal{S}}[\hat{R}] - \hat{R}\right)^2]$$

This can be shown the same way we used in deriving the bias-variance trade-off in regression.

Risk estimators are usually characterized in terms of their bias and variance.

Split Sample Estimator

- **1** Randomly splits S into S_{train} and S_{test}
- 2 Learns $f = L(S_{\text{train}})$ and outputs $\hat{R}_{\text{ss}} = R(S_{\text{test}}, f)$



f and \hat{R}_{ss} here depend on the outcome of two random events:

- lacktriangle sampling of S from X
- ② splitting of S, i.e. 'subsampling' S_{test} from S and letting $S_{\text{train}} = S \setminus S_{\text{test}}$

Split-Sample Estimator Bias and Variance

A split where $\mu = |S_{\text{test}}|/|S|$ will be called a μ -split.

Given the additional random event (sample splitting), we define the conditional bias of \hat{R}_{ss}

$$\mathsf{bias}_{\mu,S}(\hat{R}_{\mathsf{ss}}) = \mathbf{E}_{\mu,S}[\hat{R}_{\mathsf{ss}}] - R(f^S)$$

where $\mathbf{E}_{\mu,S}$ denotes the expectation over all μ -splits of a fixed sample S.

The (unconditional) bias can be expressed as

$$\mathsf{bias}(\hat{R}_\mathsf{ss}) = \mathbf{E}_{\mathcal{S}} \mathbf{E}_{\mu, S} [\hat{R}_\mathsf{ss} - R(f^S)]$$

over all samples $S \in \mathcal{S}$ and all their μ -splits.

Analogically for the conditional and unconditional variance.

Bias of \hat{R}_{ss}

Assuming that more examples allow learning a better classifier implies that

$$R(f) > R(f^S) \tag{1}$$

since f is trained on S_{train} , $|S_{\text{train}}| < |S|$.

Since \hat{R}_{ss} is the empirical risk of f is tested on a sample independent from S_{train} , \hat{R}_{ss} is an unbiased estimator of R(f):

$$\mathbf{E}_{\mathcal{S}}\mathbf{E}_{\mu,\mathcal{S}}[\hat{R}_{\mathsf{ss}} - R(f)] = 0$$

Considering Eq. 1, \hat{R}_{ss} thus has a positive bias in estimating $R(f^S)$, i.e.

$$\mathsf{bias}(\hat{R}_{\mathsf{ss}}) > 0$$

Filip Železný (ČVUT)

Estimating $R(f^S)$ or R(f)

Given that \hat{R}_{ss} is an unbiased estimate of R(f), we may choose to simply output f with \hat{R}_{ss} as the validated product of learning.

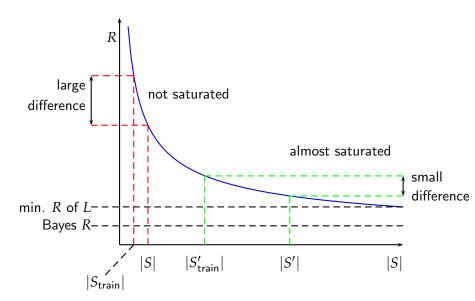
This is a compromise since f^S would have likely been a better classifier than f.

It is a reasonable approach when R(f) is not too much higher than $R(f^S)$. This occurs when S_{train} is large enough so that additional data do not contribute significantly to improve f, i.e. the learner is *saturated*.

In other cases it is preferable to produce f^S even if its risk estimate $\hat{R}_{\rm ss}$ is biased.

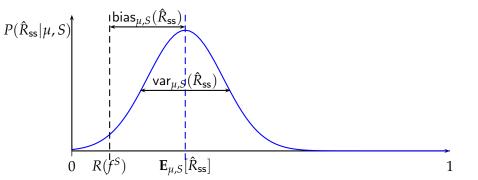
Whether a learner is saturated follows from the learning curve.

Learner Saturation



Distribution of \hat{R}_{ss}

Assume a fixed S and μ . \hat{R}_{ss} is an outcome of $\mu|S|$ Bernoulli trials (correct/incorrect classification) and for sufficiently large S, it is distributed normally.



Bias of \hat{R}_{ss}

The conditional bias

$$\mathsf{bias}_{\mu,S}(\hat{R}_{\mathsf{ss}})$$

grows with growing μ since also $|S_{train}|$ decays.

The trend holds as well for the unconditional bias

$$\mathsf{bias}(\hat{R}_{\mathsf{ss}})$$

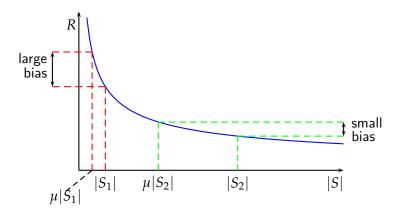
i.e. when the conditional biases are aggregated over all samples $S \in \mathcal{S}$.

The rate of decay depends on the *learning curve* of the learner L.

Bias of \hat{R}_{ss} (cont'd)

Consider two samples S_1 , S_2 from the same distribution P_{XY} .

$$|S_1| = 10$$
, $|S_2| = 60$, $\mu = 0.5$.



Filip Železný (ČVUT)

Conditional Variance of \hat{R}_{ss}

Assuming (for simplicity) that the same classifier is learned for all μ -splits, the conditional variance of $\hat{R}_{\rm ss}$ would decay with growing $\mu|S|$ as

$$\mathsf{var}_{\mu,S}(\hat{R}_\mathsf{ss}) = \frac{R(f)(1 - R(f))}{\mu|S|}$$

Rephrased: with larger test splits, estimates of \hat{R}_{ss} are more reliable.

However, the assumption holds (approximately) only if $|S_{\text{train}}|=(1-\mu)|S|$ is large enough so that L is saturated.

Otherwise, different f are learned from different μ -splits. Since $\hat{R}_{\rm ss}$ depends on f, ${\rm var}_{\mu,S}(\hat{R}_{\rm ss})$ also grows with ${\rm var}_{\mu,S}(R(f))$. That in turn grows with μ with a rate depending on the learner L.

Thus if $|S_{\text{train}}| = (1 - \mu)|S|$ is small so that L is not saturated, the trends in conditional variance cannot be predicted.

Unconditional Variance of \hat{R}_{ss} (cont'd)

According to [Hastie et al., Elements of Statistical Learning, Springer, 2009], the *unconditional variance*

$$var(\hat{R}_{ss})$$

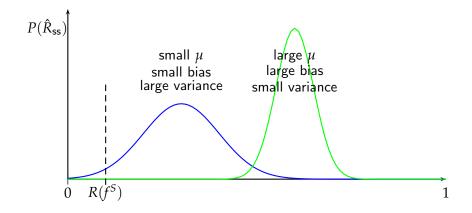
typically decays with growing μ .

This is because for small μ , the individual train splits S_{train} are very similar to each other, causing high positive correlation of the measurements $e(S_{\text{test}},f)$.

The estimate \hat{R}_{ss} is thus 'overfit' to sample S. This implies large variance over different samples, i.e. high unconditional variance.

Note: Since part of the variance is due to the conditional variance, decay of $\text{var}(\hat{R}_{\text{ss}})$ with μ may be overridden by the possible growth of $\text{var}_{\mu,S}(\hat{R}_{\text{ss}})$ with μ when the learner is not saturated. (We will see an example later).

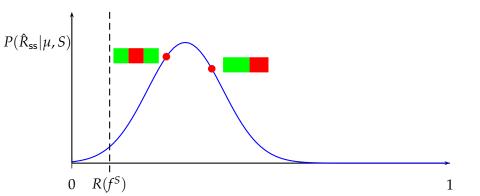
Bias-Variance Trade-off in Risk Estimation (cont'd)



Usual choice $\mu = 0.3$.

Variance of \hat{R}_{ss} due to Sample Splitting

Part of the variance $\text{var}(\hat{R}_{\text{ss}})$ is the conditional variance $\text{var}_{\mu,S}(\hat{R}_{\text{ss}})$ which is due to the random splitting of S.



Complete Subsampling

 ${\rm var}_{\mu,S}(\hat{R}_{\rm ss})$ can be completely eliminated by averaging estimates over all possible μ -splits of S

$$\hat{R}_{\mathsf{cs}} = \frac{1}{K} \sum_{\substack{S_{\mathsf{test}} \subset 2^S \\ |S_{\mathsf{test}}| = \mu |S|}} R(S_{\mathsf{test}}, L(S \setminus S_{\mathsf{test}}))$$

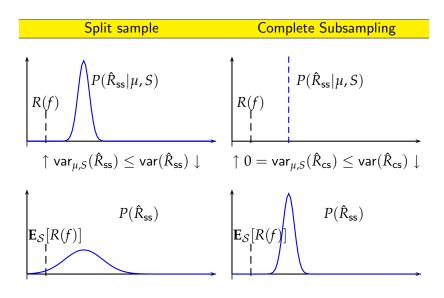
where

$$K = \left(\begin{array}{c} |S| \\ \mu |S| \end{array}\right)$$

 \hat{R}_{cs} is the *complete subsampling* estimate.

$$\begin{aligned} \text{var}_{\mu,S}(\hat{R}_{\text{cs}}) &= 0 \text{, but (conditional) bias remains,} \\ \text{bias}_{\mu,S}(\hat{R}_{\text{cs}}) &= \text{bias}_{\mu,S}(\hat{R}_{\text{ss}}) \text{, bias}(\hat{R}_{\text{cs}}) = \text{bias}(\hat{R}_{\text{ss}}) \end{aligned}$$

Split Sample vs. Complete Subsampling



Complete Subsampling and Leave-One-Out Estimate

Complete subsampling is extremely computationally difficult. Requires $\left(\begin{array}{c} |S| \\ \mu |S| \end{array}\right)$ learning and testing sessions.

The easiest are the two extreme cases $\mu|S|=1$ and $\mu|S|=|S|-1$ requiring 'only' |S| learning and testing sessions.

 $\mu |S| = |S| - 1$ is not useful due to the extremely high bias (learning from 1 example).

The $\mu|S|=1$ case is known as *leave one out* estimate. We denote it \hat{R}_{lo} .

Leave-One-Out: Bias and Variance

 \hat{R}_{lo} has the smallest possible bias (all but one examples used to learn f).

Compared to other complete subsampling cases, it has high variance $\text{var}(\hat{R}_{\text{lo}})$ due to

• The positive correlations of the summands

$$R(S_{\mathsf{test}}, L(S \setminus S_{\mathsf{test}}))$$

caused by the extreme similarity of the training subsamples $S_{\text{train}} = S \setminus S_{\text{test}}$), each two differing only by 2 examples. (The estimate is 'overfit' to S).

• The low number |S| of summands, compared to $\begin{pmatrix} |S| \\ \mu |S| \end{pmatrix}$.

Cross-Validation

 $N\text{-}fold\ cross\text{-}validation$ is a computationally feasible approximation to complete subsampling with 1/N-splits.

S is randomly partitioned into sets (folds) $S_1, S_2, \ldots S_N$ of approximately equal size and the estimate is computed as the average

$$\hat{R}_{\mathsf{cv}} = \frac{1}{N} \sum_{i=1}^{N} R(S_i, L(S \setminus S_i))$$

Cross-validation thus requires N sessions of learning and testing.

For N = |S|, N-fold crossvalidation \hat{R}_{cv} is the leave-one-out estimate R_{lo} .

Filip Železný (ČVUT) Empirical Validation February 17, 2011 21 / 29

Cross-Validation: Variance

 \hat{R}_{cv} has non-zero conditional variance $var_{N,S}(\hat{R}_{cv})$ due to the random splitting into folds, up to the leave-one-out case where N = |S| and $\operatorname{var}_{N,S}(\hat{R}_{cv}) = 0.$

The conditional variance (and consequently also the unconditional variance) can be reduced by averaging the results of L cross-validations with different splittings. This repeated N-fold cross-validation estimate \hat{R}_{rcv} approaches complete subsampling with 1/N-splits as $L \to \infty$ and

$$\lim_{L\to\infty} \mathsf{var}_{N,S}(\hat{R}_\mathsf{cv}) = 0$$

According to experimental results [Molinaro et al., Bioinformatics, 2005] with real-life data and conventional learners, the unconditional variance $var(\hat{R}_{CV})$ of 10-fold cross-validation is comparable to $var(\hat{R}_{IO})$, however, much less computation is required (10 vs. N learning sessions).

22 / 29

Cross-Validation: Bias

 ${\rm bias}_{N,S}(\hat{R}_{\rm cv})$ decays with increasing number of folds N (since the training subsamples grow) to the minimum

$$\mathsf{bias}_{N,S}(\hat{R}_\mathsf{lo}) > 0$$

achieved the leave-one-out case.

For |S|>>N, the conditional bias can be reduced by *stratification*. Stratification is an adjustment of random splitting into folds making sure that the distribution of example classes in each fold is (approximately) equal to the class distribution in S.

Leave-one-out vs. 10-fold cross-validation

According to [Molinaro et al., Bioinformatics, 2005], the leave-one-out estimate has smaller error

$$\mathbf{E}_{\mathcal{S}}[(R(f^S)-\hat{R})^2]$$

than the 10-fold cross-validation estimate (and all other estimates) on real-life (genomic) data sets.

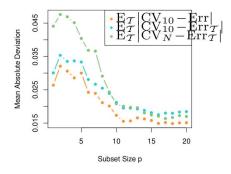
Estimator	p	Algorithm	Estimation	SD	Bias	MSE
$\widetilde{ ilde{ heta}}_n$	0.87	LDA	0.026	0.028		
		DDA	0.073	0.058		
		NN	0.010	0.017		
		CART	0.099	0.092		
v-fold CV	0.5	LDA	0.067	0.060	0.041	0.005
		DDA	0.106	0.079	0.033	0.009
		NN	0.011	0.025	0.001	0
		CART	0.304	0.088	0.205	0.063
	0.2	LDA	0.034	0.045	0.008	0.002
		DDA	0.085	0.049	0.012	0.003
		NN	0.011	0.024	0.001	0
		CART	0.158	0.072	0.059	0.012
	0.1	LDA	0.032	0.041	0.006	0.001
		DDA	0.074	0.048	0.001	0.002
		NN	0.010	0.021	0	0
		CART	0.118	0.063	0.019	0.006
LOOCV	0.025	LDA	0.028	0.040	0.002	0.001
		DDA	0.072	0.049	-0.001	0.002
		NN	0.010	0.022	0	0
		CART	0.110	0.075	0.011	0.006
Split	0.333	LDA	0.046	0.076	0.020	0.005
		DDA	0.066	0.085	-0.007	0.008
		NN	0.007	0.029	-0.003	0.001
		CART	0.265	0.116	0.166	0.047
	0.5	LDA	0.073	0.078	0.047	0.007
		DDA	0.093	0.099	0.020	0.013
		NN	0.010	0.028	0	0.001
		CART	0.308	0.114	0.209	0.071
.632+	≈.368	LDA	0.037	0.036	0.011	0.001
50 repetitions		DDA	0.085	0.036	0.012	0.003
		NN	0.008	0.016	-0.002	0
		CART	0.160	0.034	0.061	0.010

Leave-one-out vs. 10-fold cross-validation (cont'd)

According to [Hastie et al., Springer, 2009], the leave-one-out estimate has larger conditional absolute error

$$\mathbf{E}_{N,S}[|(R(f^S)-\hat{R})|]$$

than the 10-fold cross-validation estimate on simulated data sets.



However, both sources recommend the 10-fold cross-validation (preferably stratified and repeated) as a good trade-off between estimate error and computational complexity.

Selection of Learners or Parameters

A set of learners is available $\mathcal{L} = \{L_1, \dots L_l\}$. \mathcal{L} may refer to a single algorithm with l different values of a parameter (e.g. the maximum number of literals in a conjunction).

The best learner for the available sample S may be selected as

$$\arg\min_{L_i\in\mathcal{L}}\hat{R}(L_i,S)$$

Since test splits were used for the selection, $\hat{R}(L_i, S)$ would no longer be valid risk estimate of L_i (it will typically have a negative bias).

Therefore, selection must be based on internal estimation.

Internal and External Estimation

When selection of a learner from a set $\mathcal{L} = \{L_1, \ldots, L_l\}$ (L_i may correspond to different parameter values of different kind of algorithms) is part of learning, we formally consider a learner $L_{\mathcal{L}}$ that learns

$$f^S = L_{\mathcal{L}}(S) = L(S)$$

where

$$L = \arg\min_{L_i \in \mathcal{L}} \hat{R}(L_i, S)$$

 \hat{R} is some risk estimate (usually cross-validation), called the *internal* estimate. Risk of f^S is estimated as

$$\hat{R}(L_{\mathcal{L}},S)$$

where \hat{R} is some risk estimate (usually split-sample), called the *external* estimate. Note that computation of $\hat{R}(L_{\mathcal{L}},S)$ involves splitting of S, and then splitting the splits of S!

Example: Learner/Parameter Selection

Goal: Given sample S, select a learner (or parameter) and learn a classifier.

Case 1: we are not interested in the risk of f^S .

Using 5-fold cross-validation:

① Perform cross-validation on S for each $L \in \mathcal{L}$

Select L_i that minimizes cross-validation error

② With L_i , learn classifier on the entire sample S, i.e. $f^S = L_i(S)$

Example: Learner/Parameter Selection

Case 2: we *are* interested in the risk of f^S . Now we must apply both external and internal validation.

External validation using split-sample method:

2 Perform internal cross-validation on S_{train} for each $L \in \mathcal{L}$

Select L_i that minimizes cross-validation error

- **3** With L_i , learn classifier on sample S_{train} , i.e. $f = L_i(S_{\text{train}})$
- **3** Risk of f^S estimated as $e(S_{test}, f)$
- **1** With L_i , learn classifier on sample S, i.e. $f^S = L_i(S)$