Cluster analysis - advanced and special algorithms

Jiří Kléma
Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/a4m33sad/start

Outline

- robustness of the introduced methods - examples,
- k-means and hierarchical agglomerative clustering - complexity,
- clustering quality - evaluation
- internal versus external partitioning evaluation,
- clustering definition?
- an advanced method
- spectral clustering,
- special methods
- conceptual clustering,

- bi-clustering,
- semi-supervised clustering.

Comparison: \mathbf{k}-means and hierarchical single-link

- single linkage tends to generate longer non-compact clusters,
- k-means makes compact clusters, complete linkage is outlier sensitive,

k-means intuitively correct

k-means	Single-link

single linkage intuitively correct

Complexity - comparison

- assumed: $d\left(x_{i}, x_{j}\right) \in \mathcal{O}(n)$,
- k-means algorithm
- assign instances into clusters: $\mathcal{O}(\mathrm{km})$ distance computations $\rightarrow f_{E} \in \mathcal{O}(\mathrm{knm})$,
- modify centroids: $f_{M} \in \mathcal{O}(n m)$ (each instance used exactly once in one of the centroids),
- unknown iteration number before stop: i (estimates vary from the constant with m up to $\left.\mathcal{O}\left(m^{k n}\right)\right)$,
- summary: $f=i\left(f_{E}+f_{M}\right) \in \mathcal{O}(i k n m)$,
- hierarchical agglomerative clustering (single link)
- initialize
* compute distances among all instance pairs $f_{I} \in \mathcal{O}\left(m^{2} n\right)$,
* next-best-merge array - the nearest neighbor with its distance for each cluster (complexity hidden in the previous line),
$-m-1$ iterations to complete the dendrogram
* find the smallest distance in the next-best-merge array $f_{E_{0}} \in \mathcal{O}(m)$,
* adjust the distance matrix $f_{E_{1}} \in \mathcal{O}(m)$,
* adjust the next-best-merge array $f_{E_{2}} \in \mathcal{O}(m)$,
- summary: $f=f_{I}+(m-1)\left(f_{E_{0}}+f_{E_{1}}+f_{E_{2}}\right) \in \mathcal{O}\left(m^{2} n\right)$.

Clustering quality - evaluation

- internal: quantifies three partitioning characteristics
- homogeneity - are instances within clusters similar?

$$
h o m=\frac{1}{m} \sum_{i=1}^{k} \sum_{x_{j} \in C_{i}} d\left(x_{j}, \mu_{i}\right)
$$

- separability - are instances in different clusters dissimilar?
$\operatorname{sep}=\frac{1}{k(k-1)} \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \exp \left(-\frac{d^{2}\left(\mu_{i}, \mu_{j}\right)}{2 \sigma^{2}}\right)$,
- stability - how many relations breaks up by adding noise or random instance sampling?
- internal evaluation criteria in the clustering algorithms
- intra-cluster variability: (see homogeneity for k-means),
- model likelihood: (for probabilistic models, see EM GMM),
- the size of the balanced cut of similarity graph: (see spectral clustering later) $\frac{1}{2} \sum_{i j} s\left(x_{i}, x_{j}\right)\left(1-\delta\left(C_{i}-C_{j}\right)\right)\left(\frac{1}{\left|C_{i}\right|}+\frac{1}{\left|C_{j}\right|}\right)$,
- clustering is subjective, the "objective" internal measure can be improper.

Clustering quality - evaluation

- external: match the partition Ω with a known annotation $G=\left\{G_{1}, \ldots, G_{c}\right\}$ (gold standard),
- basic external evaluation criteria
- purity
* the total major instance class ratio across clusters
(each cluster has a major class, the higher its ratio in the cluster the better), $\operatorname{purity}(\Omega, G)=\frac{1}{m} \sum_{i=1 \ldots k} \max _{j=1 \ldots c}\left|C_{i} \cap G_{j}\right|$
* disadvantage: cannot compare partitions with different k,
* example (figure): purity $=\frac{5+4+3}{17}=0.71$

Manning et al.: Introduction to Information Retrieval.
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

Clustering quality - evaluation

- basic external evaluation criteria (continuation)
- normalized mutual information
* based on information entropy,

$$
\begin{aligned}
& N M I(\Omega, G)=\frac{2 I(\Omega, G)}{H(\Omega)+H(G)} \\
& I(\Omega, G)=-\sum_{i=1 \ldots k} \sum_{j=1 \ldots c} P\left(C_{i} \cap G_{j}\right) \log _{2}\left(\frac{P\left(C_{i} \cap G_{j}\right)}{P\left(C_{i}\right) P\left(G_{j}\right)}\right) \\
& H(\Omega)=-\sum_{i=1 \ldots k} P\left(C_{i}\right) \log _{2}\left(P\left(C_{i}\right)\right), H(G)=-\sum_{j=1 \ldots c} P\left(G_{j}\right) \log _{2}\left(P\left(G_{j}\right)\right) \\
* & \text { example (figure }): H(\Omega)=-2 \frac{6}{17} \log _{2}\left(\frac{6}{17}\right)-\frac{5}{17} \log _{2}\left(\frac{5}{17}\right)=1.58, H(G)=1.52 \\
& N M I=\frac{2 \times 0.96}{1.58+1.52}=0.62
\end{aligned}
$$

- rand index
* clustering is interpreted as a sequence of $\binom{m}{2}=\frac{m(m-1)}{2}$ decisions,
* decision $=$ the partitioning either puts a instance pair into the same cluster or not,
*TP... an instance pair in the same cluster in Ω and the same class in G,
*TN... an instance pair in different clusters in Ω and different classes in G,
* $R I(\Omega, G)=\frac{T P+T N}{T P+T N+F P+F N}=\frac{2(T P+T N)}{m(m-1)}$
* example (figure): $R I=\frac{\left.2\binom{5}{2}+\binom{4}{2}+\binom{3}{2}+\binom{2}{2}+5 \times 8+1 \times 7+4 \times 5+1 \times 2+1 \times 3\right)}{17 \times 16}=0.68$

Defining clustering by ...

- a quality function - see the previous slides
+ can use standard optimization techniques,
- heuristic choice of quality function, usually NP hard,
- high density areas
- a cluster is a high density area, clusters are separated by low density areas, + intuitively makes sense, density estimation is the well-known problem,
- for non-trivial dimension even more demanding than clustering itself,

Defining clustering by ...

- a model-based approach
- assumed that data were generated by a (probabilistic) model
- the model implicitly defines clusters, + model more than a partition $=$ a clear interpretation,
+ standard techniques such as ML, EM, Bayesian approaches available,
- often too strong assumptions eventually unsatisfied, parameter estimation is not easy,
- an axiomatic view
- clustering function from the distance matrix to partitioning defined indirectly by properties,
- an axiomatic system example:
* scale invariance: distance scaling does not change the partitioning,
* richness: for any clustering there exists a distance matrix which induces it,
* consistency: shrink/expand distances inside/outside cluster \rightarrow partition unchanged,
+ an elegant way of definition,
- seemingly harmless axiom sets contradictory, ad hoc choice, often not pract. helpful,
- information theory
- clustering=lossy compression, defined by acceptable amount of loss or code length,
- what is the "original information"? cannot be solved analytically.

Spectral clustering - motivation

- clustering algorithms assume certain cluster shapes
- unexpected shapes cause difficulties (eg. linearly non-separable clusters),
- "classical pairwise similarity" can be insufficient.

K-means application

Single linkage application
R, kernlab package, specc function demo

Spectral clustering - context

- frequent solution is a feature space transformation,
- a domain independent clustering algorithm, the transformation tuned for the domain
- explicit transformation
* get the object coordinates in the new feature space,
* traditional clustering in the new space,
* illustrative, but impractical,
- implicit transformation
* via similarity resp. kernel function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$,
* purely a function of object pairs, no object coordinates in the new space,
* very natural for clustering, similarity/distance its essential part anyway,
* kernel trick analogy (SVM classification),
- kernel k-means (see the next slide),
* an implicit high-dimensional space, clusters (classes) potentially easily separable,
* kernel PCA - kernel matrix \rightarrow diagonalize \rightarrow a low-dimensional feature space.

Kernel k-means

- apply k-means in the transformed feature space induced by a kernel function
- the original objects: $x_{1}, x_{2}, \ldots, x_{m}$,
- the transformed objects: $\Phi\left(x_{1}\right), \Phi\left(x_{2}\right), \ldots, \Phi\left(x_{m}\right)$ (not explicitly calculated),
- the kernel function: $k\left(x_{i}, x_{j}\right)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$,
- cluster centers in the transformed space: $\mu_{v}=\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)$ (not explicitly known),
- only (squared) distances between objects and cluster centers need to be known:

$$
\begin{aligned}
\left\|\Phi(x)-\mu_{v}\right\|^{2} & =\left\|\Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)\right\|^{2}= \\
& =\left\langle\Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right), \Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)\right\rangle= \\
& =\langle\Phi(x), \Phi(x)\rangle-\frac{2}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}}\left\langle\Phi(x), \Phi\left(x_{i}\right)\right\rangle+\frac{1}{\left|C_{v}\right|^{2}} \sum_{x_{i} \in C_{v}, x_{j} \in C_{v}}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle= \\
& =k(x, x)-\frac{2}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} k\left(x, x_{i}\right)+\frac{1}{\left|C_{v}\right|^{2}} \sum_{x_{i} \in C_{v}, x_{j} \in C_{v}} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Example: spirals - connectivity kernel, Gaussian kernel

- connectivity kernel
- the object pair distance given by the max edge on the path connecting the objects,
- if there are more paths, the one minimizing the criterion above is taken,
- more robust than single linkage,

Fischer et al.: Clustering with the Connectivity Kernel

- Gaussian (RBF) kernel
$-s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\| / \sigma^{2}\right)$,
- σ set to have a "tight" object neighborhood,
- an implicit feature space (infinite dimension).

Spectral clustering in a nutshell

- input: a set of objects,

- described as a graph,
- edges encode similarity,
- graph decomposed into components = clusters,
- graph partitioned by its spectral properties.

Azran: A Tutorial on Spectral Clustering

Graph theory - basic terms

- vertex (object) similarity (affinity)

$$
-s_{u v}=\langle u, v\rangle
$$

- vertex degree (volume), degree matrix
$-d_{u}=\sum_{v=1}^{m} s_{u v}$,

$-\mathcal{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$,
- size and degree of a vertex set (cluster)
$-|A| \ldots$ the number of vertices in A,
$-\operatorname{vol}(A)=\sum_{u \in A} d_{u}$,

Azran: A Tutorial on Spectral Clustering

Spectral clustering as an approximated minimum graph cut

- clustering \sim partition the similarity graph into components,
- can be solved as an optimization problem
- search for a minimum edge cut in the similarity graph \mathcal{S} to make it disconnected * $\min _{A \subset S} \operatorname{cut}(A, \bar{A})$,
* a computationally feasible problem, but rather unsatisfactory partitions,

mincut, incorrect

RatioCut, Ncut, correct

- a "reasonable" size of the components needs to be required
* minimize one of the balanced cut criteria,
* RatioCut $(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right)$,
* $\operatorname{Ncut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)$,
* the dark side of the coin: NP-hard problems,
- spectral clustering provides a relaxed and feasible solution to the balanced cut problem.

Spectral clustering - algorithm

- inputs: $\mathcal{X}=\left[x_{i j}\right]_{m \times n}=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{R}^{n}, k$

1. select the similarity function

- linear, RBF, polynomial, etc.
- a general rule assigning functions to problems does not exist,

2. compute the similarity (adjacency) matrix $\mathcal{S}=\left[s_{i j}\right]_{m \times m}$

- (a new implicit feature space originates),

3. construct a "reasonable" similarity graph by editing \mathcal{S}
$-\mathcal{S}$ is a complete graph, vertices \sim objects, similarities \sim edges,

- remove long (improper) edges,

4. derive the Laplace matrix \mathcal{L} out of the similarity matrix \mathcal{S}

- unnormalized: $\mathcal{L}=\mathcal{D}-\mathcal{S}$,
- normalized: $\mathcal{L}_{r w}=\mathcal{D}^{-1} \mathcal{L}=\mathcal{I}-\mathcal{D}^{-1} \mathcal{S}$,

5. project into an explicit space of k first eigenvectors of \mathcal{L},
$-\mathcal{V}=\left[v_{i j}\right]_{m \times k}$, eigenvectors of \mathcal{L} as columns,
6. k-means clustering in \mathcal{V} matrix
$-\mathcal{V}$ rows interpreted as new object positions in k-dimensional space.

Spectral clustering - similarity graph

- reduce the complete graph to an undirected graph concerning local neighborhoods,
- vertices shall have a reasonable degree $(\ll m)$,
- basic approaches
$-\epsilon$-neighborhood
$* s_{i j}>\epsilon \rightarrow$ vertices i and j connected by an edge, otherwise $s_{i j}=0$,
- k-nearest neighbors
* symmetric: connect i and j if i belongs to k nearest neighbors of j or vice versa,
* mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,
- keep the complete graph
* usually with the RBF or other strictly local kernel.

Euclidean similarity, 3 nearest neighbors (var sym)

RBF kernel, too small ϵ

RBF kernel, a suitable ϵ

Spectral clustering - graph Laplacian

- concern the unnormalized option: $\mathcal{L}=\mathcal{D}-\mathcal{S}$
- then for $\forall f \in \mathbb{R}^{m}$

$$
\begin{aligned}
f^{\prime} \mathcal{L} f & =f^{\prime} \mathcal{D} f-f^{\prime} \mathcal{S} f= \\
& =\sum_{i=1}^{m} d_{i} f_{i}^{2}-\sum_{i, j=1}^{m} f_{i} f_{j} s_{i j}= \\
& =\frac{1}{2}\left(\sum_{i=1}^{m}\left(\sum_{j=1}^{m} s_{i j}\right) f_{i}^{2}-2 \sum_{i, j=1}^{m} f_{i} f_{j} s_{i j}+\sum_{j=1}^{m}\left(\sum_{i=1}^{m} s_{i j}\right) f_{j}^{2}\right)= \\
& =\frac{1}{2} \sum_{i, j=1}^{m} s_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

- measures the variation of function f along the graph
- the value $f^{\prime} \mathcal{L} f$ is low when close vertices agree in their f_{i},
- assumes that near objects shall have close function values (f),
- the discrete Laplace operator encodes the same property,
- an interesting case: $f=\mathbb{1}_{A}\left(f_{i}=1\right.$ if $v_{i} \in A$ otherwise $\left.f_{i}=0\right), A$ is a graph component.

Spectral clustering - eigenvectors of \mathcal{L}

- eigenvectors x of \mathcal{L} matix $(\mathcal{L} x=\lambda x)$ provide a good graph partitioning indication,
- an ultimate (ideal) case: graph has exactly k components
- k smallest eigenvectors ideally split k clusters,
$-\lambda_{1}=\cdots=\lambda_{k}=0<\lambda_{k+1} \leq \cdots \leq \lambda_{m} \rightarrow x_{1}, \ldots, x_{k}$,
- other (usual) cases: a connected graph, k component candidates exist
- the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.

The ideal case for $k=2$.

Spectral clustering - eigenvalues of \mathcal{L}

- provided k is unknown, eigengap statistic
- a k-means gap heuristic analogy,
- concern only small eigenvectors before the first jump in eigenvalues,
- the number of clusters matches the number of selected eigenvectors.

Eigenvalues

Eigenvalues

Histogram of the sample

Eigenvalues

Example: spirals - eigenvectors

- similarity matrix splits the graph into components nearly ideally,
- the second eigenvector of \mathcal{L} is a perfect component indicator.

Similarity matrix for RBF kernel with a suitable σ the instance order is illustrative and keeps the real spiral membership

Projection - the first and second eigenvector space \mathcal{S} colors give the real spiral membership, k -means clustering is trivial

Spectral clustering - summary

- advantages
- does not make strong assumptions on cluster shape,
- simple to implement - uses existing algorithms,
- does not have a local optima, cannot stuck,
- a modular approach applicable in a range of problems
* modify the kernel or similarity graph to adapt to a new problem,
- eigengap heuristic to find an optimal cluster number,
- successful in a range of real problems,
- disadvantages
- can be sensitive to choice of parameters, unclear how to set them, * kernels (eg. σ for RBF), graph similarity (ϵ or k),
- computationally expensive on large non-sparse graphs, * use only after simpler algorithms fail,
- not really clear what it does on non-regular graphs (e.g. power law graphs),
- demo
- http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.

Spectral clustering - exam, multiple-choice test

- Spectral clustering:
(a) represents an exact polynomial solution of the minimum graph cut problem, the graph represents object similarity,
(b) represents an approximate solution of the balanced graph cut problem, the graph represents object similarity,
(c) transforms the original feature space, employs linear algebra, therefore the transformation is linear,
(d) employs the efficient spectral graph analysis, it is computationally less demanding than k-means.

Conceptual clustering - motivation

- the objects in one cluster share a property
- it generalizes the earlier similarity-based cluster definition,
- (the common property was e.g. the proximity to a cluster centroid),
- besides the partition it also generates a cluster description
- concept ($=$ a definition of a subset of instance space in a language),
- (it is big, yellow, fast, it makes noise, five people fits in ... it is a car),
- refers both to clustering and recognition
- the property defining a cluster can be complex.

Tan et al.: Introduction to Data Mining

Conceptual clustering: COBWEB (Fisher, 1987)

Name	BodyCover	HeartChamber	BodyTemp	Fertilization
fish	scales	two	unregulated	external
amphibian	moist_skin	three	unregulated	external
mammal	hair	four	regulated	internal
bird	feathers	four	regulated	internal
reptile	cornified_skin	imperfect_four	unregulated	internal

Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering

Conceptual clustering: COBWEB (Fisher, 1987)

Name	BodyCover	HeartChamber	BodyTemp	Fertilization
fish	scales	two	unregulated	external
amphibian	moist_skin	three	unregulated	external
mammal	hair	four	regulated	internal
bird	feathers	four	regulated	internal
reptile	cornified_skin	imperfect_four	unregulated	internal

Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering

COBWEB algorithm

- instance by instance makes a (classification) tree,
- internal node $=($ probabilistic $)$ concept, leaf $=$ instance,
- for each instance takes one of the following operators
- create a new class - find a position in the hierarchy for a new subclass,
- assign the instance into an existing class - an object is similar with the objects belonging to one of the classes,
- to minimize the influence of instance ordering, concern the learning operators
- merge classes - two classes replaced by one class,
- split class - one class breaks to subclasses or individual objects,
- bi-directional hill-climbing search driven by the category utility function.

COBWEB: evaluation function

- What is a good clustering result/partition?
- feature values are predictable within a class
* "It is a taxi." \Rightarrow "It is yellow.",
* expressed by $\operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right)$ (example with high $\operatorname{Pr}\left(f_{\text {color }}=\right.$ yellow $\left.\left.\mid C_{\text {taxi }}\right)\right)$
- $F=\left\{f_{1}, \ldots, f_{n}\right\} \ldots$ a feature set,
- $V_{i}=\left\{v_{i 1}, \ldots, v_{i l}\right\} \ldots$ the values of the i -th feature,
- $\Omega=\left\{C_{1}, \ldots, C_{k}\right\} \ldots$ the partition of \mathcal{X} set,
* corresponds to homogeneity shown earlier,
- feature values are predictive for classes
* "It has a hair." \Rightarrow "It is a mammal.",
* expressed by $\operatorname{Pr}\left(C_{c} \mid f_{i}=v_{i j}\right)$ (example with high $\operatorname{Pr}\left(C_{\text {mammal }} \mid f_{\text {bodyCover }}=\right.$ hair $)$),
* corresponds to separability shown earlier,
- the feature values with the above-mentioned properties shall be frequent
* "It uses ultrasound to navigate." \Rightarrow "It is a mammal.",
* of limited use since $\operatorname{Pr}\left(f_{\text {navigation }}=\right.$ ultrasound $) \rightarrow 0$,
- the partition is compact/brief
* the fewer categories/concepts, the better.

COBWEB: evaluation function

- COBWEB measures partitioning quality with category utility
- summarizes the properties mentioned on the previous slide,
- it is a mutual information modification,
- partitioning quality - feature frequency \times class predictiveness \times feature predictability

$$
\begin{aligned}
& \sum_{c=1}^{k} \sum_{i=1}^{n} \sum_{j=1}^{\left|V_{i}\right|} \operatorname{Pr}\left(f_{i}=v_{i j}\right) \operatorname{Pr}\left(C_{c} \mid f_{i}=v_{i j}\right) \operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right)= \\
= & \sum_{c=1}^{k} \sum_{i=1}^{n} \sum_{j=1}^{\left|V_{i}\right|} \operatorname{Pr}\left(C_{c}\right) \operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right) \operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right)=\sum_{c=1}^{k} \operatorname{Pr}\left(C_{c}\right) \sum_{i=1}^{n} \sum_{j=1}^{\left|V_{i}\right|} \operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right)^{2}
\end{aligned}
$$

- the category utility function shall also concern
- partitioning brevity - normalize by the number of clusters,
- the referential information carried by the original (unclustered) data.

$$
U C(\Omega, \mathcal{X})=\frac{1}{k} \sum_{c=1}^{k} \operatorname{Pr}\left(C_{c}\right)\left(\sum_{i=1}^{n} \sum_{j=1}^{\left|V_{i}\right|} \operatorname{Pr}\left(f_{i}=v_{i j} \mid C_{c}\right)^{2}-\sum_{i=1}^{n} \sum_{j=1}^{\left|V_{i}\right|} \operatorname{Pr}\left(f_{i}=v_{i j}\right)^{2}\right)
$$

COBWEB: summary

- algorithm properties
- symbolic: nominal features,
- hierarchical: creates a taxonomy,
- incremental: the output made gradually, instance by instance,
- what language it works with?
- the probabilistic concept description is a weak language (a vague one),
- it permits an arbitrary concept
* an example for three binary features: $\operatorname{Pr}\left(x \mid C_{j}\right)=[0.6,0.5,0.7]$,
- when enhanced by constraints it is a stronger language
* define α factor for minimum deviation from 0.5,
* the constraint can apply to the maximum deviation or all the deviations (features),
* $\alpha=0.3$ for one feature at least
- the vector $[0.6,0.5,0.7]$ is not a concept, $[0.6,0.5,0.9]$ vice versa,
* the ultimate case $\alpha=0.5$ for all the features
- the language of logical conjunctions,
- how would you classify an unseen example?

Bi-clustering (co-clustering)

- (hierarchical) both for instances and features,
- frequent in gene expression data analysis or text mining,
- instances: tissues, features: genes,
- figure: two-way clustering carried out independently (successively) in both dimensions
- comprehensible visualisation,
- a global model
* all tissues used to cluster genes,
* all genes used to cluster tissues,
- bi-clustering clusters concurrently in both dimensions
- a local model
* only relevant tissues to cluster particular genes,
* only relevant genes to cluster particular tissues,
- genes can have multiple functions, different biolog-
 ical conditions trigger different functions,
- incomplete and inexclusive (skip object/feature, cluster overlaps).

Bi-clustering - cluster structures

(a) single bi-cluster, (b) exclusive rows and columns, (c) checkerboard, (d) exclusive rows,
(e) exclusive columns, (f) hierarchical nonoverlapping, (g) nonoverlapping nonexclusive,
(h) hierarchical overlapping, (i) arbitrarily positioned overlapping.

Bi-clustering - an algorithm example

- block clustering (also direct clustering, Hartigan)

1. order rows (columns) by row (column) means,
2. find the best row or column split,
(a) criterion is the decrease in the internal block variance,

$$
\sum_{c=1}^{k} \sum_{i \in I, j \in J}\left(x_{i j}-x_{I J}\right)^{2}
$$

(I, J) is a bi-cluster, $I \subseteq\{1 \ldots m\}, I \subseteq\{1 \ldots n\}, x_{I J}$ is the bi-cluster mean,
(b) splits always keep the row/column order - the linear number of tests with m and n,
3. repeat the previous step in both sub-blocks until the given k is reached,

- hierarchical divide and conquer approach,
- trivial, fast algorithm with roughly suboptimal solutions,
- searches for (f) type bi-clusters, ie. hierarchical nonoverlapping,
- preference for constant bi-clusters - ideally the only value in whole bi-cluster.

Block clustering - US presidential elections

- the republican vote for president (the republican candidate vote percentage),
- the southern US states in 1900-1968.

Year

State	Year																
	12	363240	44	448	1604	68		082	240	002	20	28	56		60	52	64
SC	1	124		4	25	39			2	7	4	9	25				59
MI	2	$3 \quad 4 \quad 4$		63	55	14		7	81	101	14	18	24		25	40	87
GA	4	138815	18	818	718	30		311	182	292	29	45	33		37	30	54
IA	5	11714	19	917	710	23		122	202	213	31	24	53		29	47	57
AA	8	131414	18	819	2221	14		24	273	353	31	48	39		42	35	70
TS	9	121119	17	725	1722	40		222	203	31	24	52	55		49	53	37
FA	8	242526	30	034	1821	41		222	281	19	31	57	57		52	55	48
AS	20	1813121	30	021	2840	31		372	293	353	35	39	46		43	44	44
VA	17	293032	37	741	3237	43		383	334	443	38	54	55		52	56	46
NC	12	272926	33	333	4240	40		464	404	454	43	55	49		48	46	44
TE	24	$\begin{array}{llll}31 & 32 & 33\end{array}$	39	937	4343	38		464	444	455	51	54	49		53	50	4
KY	25	404042		541	4747	44		484	494	494	49	59	54		54	50	36
MD	24	$37 \quad 3641$	48	849	4549	42		494	455	525	55	57	60		46	55	35
MO	30	$38 \quad 3548$		842	4750	45		495	504	465	55	56	50		50	51	36
WV	21	394443		5424	4955	40		534	495	545	55	58	54		47	48	32
DE	33	435145	45	550	5054	45		525	585	545	56	65	55		49	52	39

Hartigan: Direct Clustering of a Data Matrix.

Bi-clustering - another algorithm

- Cheng and Church

- the first bi-clustering algorithm used for microarray data,
- stems from the modified variance definition (residues)

$$
\sum_{c=1}^{k} \frac{1}{|I||J|} \sum_{i \in I, j \in J}\left(x_{i j}-x_{I j}-x_{i J}+x_{I J}\right)^{2}
$$

* superpose background $\left(x_{I J}\right)$, gene effect $\left(x_{i J}\right)$ and effect of biological conditions $\left(x_{I j}\right)$,
- problem: some trivial bi-clusters having zero residue $(1 \times m$ or $1 \times n)$
* introduces a threshold residue δ, searches for the largests bi-clusters having residue $<\delta$,
- greedy algorithm (bi-clusters of the type (i))

1. start with the whole matrix,
2. remove a row or column causing the top residual decrease,
3. repeat step 2 until the residue cannot be further decreased or it is $<\delta$,
4. randomize the values in the found bi-cluster, repeat (1-3) for k bi-clusters.

- figure: additive (left pane) a multiplicative (right pane) bi-cluster.

1.0	2.0	5.0	0.0
2.0	3.0	6.0	1.0
4.0	5.0	8.0	3.0
5.0	6.0	9.0	4.0
1.0	2.0	0.5	1.5
2.0	4.0	1.0	3.0
4.0	8.0	2.0	6.0
3.0	6.0	1.5	4.5

Semi-supervised clustering

- besides (unannotated) instances, it takes a prior knowledge as an input
- a few annotated (classified) instances (cluster seeds),
- constrains (usually must-link or cannot-link relations),
- modifies the classic clustering algorithms
- EM clustering for both classified and unclassified instances

1. construct a probabilistic model using the initial classified sample set,
2. standard EM iterations, the classified instances get "frozen" (ie. cannot change cluster),

- modify qualitative evaluation of the partitioning
* homogeneity as well as reward for keeping must-link and penalty for violating cannot-link,

Semi-supervised clustering

■ how to learn to recognize eclipse photographs in reasonable time?

Semi-supervised clustering

- success story: document classification into 20 discussion groups [Nigam, 2006]
- 2 classified training instances per discussion group available only,
- further we have 10000 unclassified instances,
- naïve Bayes model made from 40 documents (without clustering): 27% class. accuracy,
- the same model type for 10040 documents (with clustering): 43% classification accuracy,
- necessary condition to succeed: data clusters must match classes.
- an explanation for 16% increase in accuracy?

Decision boundary for annotated instances only

Decision boundary with unannotated instances

Zhu: Semi-Supervised Learning Tutorial

Advanced clustering - summary

- Clustering covers a wide range of methods
- not merely an instance set partitioning in \mathbb{R}^{n} dealing with disjoint clusters,
- in general, it discovers arbitrary frequent co-occurrence of events in data,
- unsupervised = subjective approach
- "gold true" does not exist (compare with classification),
- the outcome is influenced by the employed implicit and explicit knowledge,

Jain: Data Clustering: 50 Years Beyond K-Means, modified

- tightly related to learning
- conceptual clustering - knowledge-based with cluster/concept descriptions,
- semi-supervised clustering - both annotated and unannotated instances,

Advanced clustering - summary

- exists in many modifications
- bi-clustering
* rather the local (context-sensitive) than global similarity.
- topics not covered
- heterogenous data
* that cannot be represented as a constant-size feature vector,
- large scale clustering
* efficient NN, incremental clustering, sampling, distributed computing, prior data summarization,
- clustering ensembles
* the result obtained by combining multiple partitions.

Recommended reading, lecture resources

:: Reading

- von Luxburg: Lectures on Clustering.
- PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,
- http://videolectures.net/bootcamp07_luxburg_clu/,
- Fisher: Knowledge Acquisition Via Incremental Conceptual Clustering.
- Machine Learning 2, 139-172, 1987.
- http://www.springerlink.com/index/X8552PPN35245112.pdf,
- Madeira, Oliveira: Biclustering Algorithms for Biological Data Analysis.
- IEEE/ACM Trans Comput Biol Bioinform. Jan-Mar 1(1):24-45, 2004.
- http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.3943,
- Zhu: Semi-Supervised Learning Tutorial.
- http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf.
- Nigam, McCallum, Mitchell: Semi-Supervised Text Classification Using EM.
- In Chapelle, Zien, Scholkopf (eds.) Semi-Supervised Learning. MIT Press, 2006.

