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Residual Modes for Structure Reduction and
Efficient Coupling of Substructure
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Abstract—The paper deals with the systematical analysis
of the reduction of the large structures using thesingular
perturbation approximation for the interconnected
subsystems. The proportionally damped system
considered in the special modal form identical to he
almost balanced form of the model. The residual maalis
evaluated for the different types of outputs, namel
position, velocity and acceleration form. Two mairtargets
are the efficiency of the algorithms and the accumry of the
coupled reduced model with respect to the originalarge
model. The efficient algorithm and the significant
improvement of the accuracy with respect to the
interconnection of the truncated subsystems are sham.

is

Index Terms—Dynamical model reduction, State-space,
Residual modes, Singular perturbation approximation
Coupling of substructures.

INTRODUCTION
he design of the control law of the flexible ma@sn

vibration suppression and the flexible system nmotio

control (e.g. [1], [2], [3]) needs an accurate dyital models
of the structure with the reasonably moderate (@eder). The
need of the efficient control law synthesis accagtyi leads to
the well known contradictory requests. On the oaadhthe
model should be as accurate as possible, on tlez b#nd it
should be as small as possible. The original fofth@ model
is very often a detailed FEM model by far largearthis
acceptable in the control design context.

Such structural model is typically reduced eithefobe or
after transferring it into the modal space. Themfave
distinguish between a model order reduction basedhe
chosen physical coordinates (i.e. nodal DOF) ely. [b] or
based on the modal coordinates e.g. [2], [3]. Tésembling
of the total reduced order model from the substmest can
advantageously combine both types of coordinatésT6e
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classical reduction methods used within the medadni
engineering comunity takes the first modes selebgskd on
the given frequency range of interest. The moreaaded
methods take systematically into account the releyaof
particular modes with respect to the inputs angutst Such
methods are based on the so called balanced medigttion
[7], [8] and its frequency weighted variants [9h the case of
the assembling of reduced substructures the inputs
connecting forces and the outputs are the kinealatic
quantities of the connecting points [2], [3], [LThe structural
systems with the relatively low proportional danmgpi(which

is the case of the majority of the structures inciaaical
engineering) can be transformed into the so-cadikdost
balanced form [2], [3]. Such form is obtained bye th
computationally very cheap way in comparison to iy
balanced reduction obtained by the solution of lti@punov
equations. The states of the almost balanced madel
identical to the special form of the modal statdergas the
input-output properties of the fully balanced resilianodel
are saved. With respect to this fact the modal

coordinates/states are considered within the ptedgraper.

The second important reason of the necessity ofiexft
and accurate coupling of reduced substructureslyfoamical
modelling is the changing of kinematical configimat of
mechanisms during the motion and consequently theging
odes [4].

B

of their eigenfrequencies and eigenm

active flexible

structure
Fig. 1: Parallel redundant machine Sliding Star

The example of such situation is the parallel reiduntly
actuated machine Sliding Star [11], in the Fig.lthwihe
scheme of considered active appendage on the &rutesf
The positioning within the workspace results in tezessary
dynamical model parameterization [4].

The presented paper is devoted to the systematiedysis
of the reduction of large structural systems usmggular
perturbation approximation for interconnected ssbmys.
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The two main targets are the efficiency of the athms and
the accuracy of the coupled reduced model witheetsip the
original large model.

The paper is organized as follows. In the firstagaaph
the equations of motion of proportionally dampedtesn are
transformed into the special modal form suitabletfie set up
of almost balanced form of the model. The secorrdgraph
explains the difference between the singular phestion
approximation reduction and truncation reductione General
formulas for the singular perturbation approximatiare
applied to the modal form specified within the ffipgragraph.
The computational complexity is significantly reédc Within
the third paragraph the residual mode is evalufdedthe
different types of outputs, namely position, vetpcand
acceleration form. The fourth paragraph descréresfficient
way of applying of singular perturbation for contezt
substructures and demonstrates the significantawgment of
the accuracy with respect to the interconnectionrurdicated
subsystems.

I. MODAL STATESPACEFORMOFSTRUCTURAL
SYSTEM

Let starts with the well known equation of the &ne
mechanical system.

MX +Bx +Kx =f (1.1)
Concerning modal transformatian= V( and left

multiplication by modal matri}/ " equation (1.1) leads to

V'MVG +V Bvg # Kvg v f . (1.2)

The proportional damping and distinct eigenfreqiesare
considered. The elastic part (which belongs to aomz

eigenfrequencies) of the modal madfy, has been evaluated
concerning the well known mass matrix normalization

Vi MV . =l . (1.3)

The diagonal matrix of the structures eigenfreqiesnc
Q[rad/s] is then computed as
Vi KV . =0 (1.4)

Concerning proportional damping, also the third pathe
equation system is diagonalized

VBV =2 ,Q, (1.5)

where bd is the diagonal matrix of the modal damping matio

of separate eigenmodes. The modal form of the spaee
model can be set up in different variants e.g. [3], more
appropriate for transformation to state-space foamd

corresponding also to the so called almost-balafmed. The
state vector of considered modal description hasiapform
2=[.. 7 ] wherez, =[Q,q,.q, ], G and , are

modal elastic coordinates and modal elastic ve&xitThe
state space system matrix for such coordinategheablock
diagonal form

0 Q 0 0 0
-Q; —2bg,Qy 0 0 0 (1.6)
A= 0 0 0 Q, 0
0 0 -Q, -2b;,Q, 0
0 0 0 0 o —2bgQy

N is the total number of degrees of freedom. Tpetimatrix
B for considered force inputsl(=f ) is

(1.7)

Together the dynamic equation in the state space i®

z=Az+Bu (1.8)

[I. SINGULAR PERTURBATIONAPPROXIMATIONAND
RESIDUALMODE OF STRUCTURE

The so called residual mode known from the modatesy
description can be derived as a special case ositigular
perturbation approximation. Let the original gehestate
space model is described as follows

A, A, B,
$orig =|A,; A, By (2.1)
C, C, D

Then the reduced order state space model obtainsthte
truncation of any type is

2.2)

— All Bl
$run _|:C1 D:|

Thesingular perturbation approximation (SPA) variant [8]
of reduced model preserves the DC-gains of anr@igystem
and generally can be written as

-1

s = A11_A12°‘ 20N 21
¥ 1 Cc,-CAL
1 Farraril

Bl_Aé_B 2

(2.3)
D-CAB,
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The preserving of transfer functions for DC-gainsl &or low
frequencies is important in context of the low ordeodel
approximation as well as
behaviour for the motion control (preserving rigbdy
motion components [1]). The flexible mechanicaltsgs with
proportional damping enables simplification of tgeneral
operations from (2.3) using modal form (1.6)-(1.8).

A A 0 Q.
|: 1 12}=diag(Am.),Am.={ i }
Ay Ay - _ZbdiQi

(2.4)

The special form of the system matrix in given mioda
description (1.6)-(1.8) simplifies the reducedetsppace model
(2.3) coming from SPA. Firstly the matrices

A,,=0,A, =0, so that

A11 Bl .
¢ D _CzA_zlé3 2
Secondly the simple block diagonal structure lelada very

simple form of the inversed submatriA;;. Let n is the

number of DOF/eigenmodes in ROM ahdthe number of
DOF/eigenmodes in original model before reducti®a. that

the original submatriA ,, is

ﬁ‘noda)a = |: (25)

[0 Qo 0 0 0 0
Q. 2,0, O 0 0 o |, (26)
0 0 0 Q.. 0 0
Azz = 0 0 _sz _Z)sz n+2 e 0 0
0 0 0 0 . 0 Q
| 0 0 0 0 . 0y -39,

and the inversed submatrA;; has again block diagonal
structure

-20,,,/9Q,., -1/Q,, 0 0 0 0 1.(2.7)
1/Q,., 0 0 0 0 0
0 0 -A,.,/Q,., -1Q,, .. 0 0
A= 0 0 1/0,,, 0 0 0
0 0 0 0 .-3 R, -10,
0 0 0 0 10, 0

This presents very advantageous simplificationingethatN
is typically very high number of DOF of the originmodel
coming from FEM modeling. All around the additionmrt of

the feedthrough matrixD for structural systems with
proportional damping owing to singular perturbatios
AD:—CZA;B2 including simple block diagonal form of
A;; obtainable without numerical effort of the genergitrix
inversion.

for the preserving of slod

[ll. RESIDUALMODE FORSTRUCTURALSYSTEM
WITH DIFFERENTOUTPUTS

The particular form ofD and AD will be further studied for
different variants of the mechanical outputs nanpelsitions,
velocities and accelerations. The general fornmefdutput
equation is

y=Cz+Du. (3.1)

In the case of position output of the whole systam = vq or
using state vectoz

y =V, /20V, /2,0.V, /0, 0k (3.2)

Therefore the correspondipgsition output matrices of the
whole system are

(3-3)
cposz[v1 /Ql 0 VZ/QZ 0 . VN/QN o}
Dpos =[]

In the case of velocity output of the whole system = vqor
using state vectoz

y=p v, 0v, .. 0 Vv (3.4)

Therefore the correspondinglocity output matricesof the
whole system are

CVEL=[0 vV, 0V, 0 VN].

Dg. = [0]

(3.5)

The acceleration outpyt = X = V{ cannot be evaluated

only from states, the state derivatives must betiubed from
the matrix dynamic equation. Based on equatiory<(1.5)

y =%=Vg§=V[- 20,04 - Q% +Vf)= (3.6)
=-2Vb Q4 - VQ2%q + W f

or using state vectoz

y= [—v1 Q,-2v, bdel—VZQZ—ZVZbdZQZ...—VNQN—2VNbdNQNJz+ (3.7)

{gvi A ]u

Therefore the correspondiagceleration output matricesof
the whole system are
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(3.8)

Cpcc = [— V, Q- 2V, by Q- V, Q5= 2V, 0,Q,.. - V Q= 2VNbdNQN]

N
- T
Dpcc = {Zv, v, }
i=1

The reduction of the model based on truncation)(daks not
require any further operations, computation of odidm based
on singular perturbation approximation requiresl@aition of

Therefore finally we get

N

Dpos,sea = Z
i=n+1
n
-3,

=1

AN
of

(3.10)
Wi

2
Qj

It means, that for the evaluation of SPA feedthfoomtrices

— -1 .
AD =-C,A ;B , for matrices (1.7), (1.2), (3.3), (3.5) andfor the acceleration as well as for the positiotpats we need

(3.8). The evaluation of the matridsp, for different types of

only the reduced system eigenmodes of numbestead of all

the outputs can be simply developed by the symbolld eigenmodes of the original large system.

operations (e.g. in Matlab). Based on this theofeihg results
summarized in table has been obtained. The mosbriamt
result of this analysis is the simple and cleamfaof the
residualization (singular perturbation approximafi@lso for
the acceleration outputs.

truncation (TRU) residualization (SPA)

- N
Dpos Deosru =0 Dpos epp = Z ViV’
(y - X) ’ i=n+1 Qi2
Dyver Dvertru =0 Dyver,sa =0
(y =X)
Dacc N n
(y=¥%) Daccrru = Zvi v Dacc.spa = Zvi v

i=1 i=1

Feedthrough matrices of structure for differentuibn
method and different outputs

Matrix Dpog gpa

property of the static flexibility matrixG = K ™. This matrix

can be composed from the eigenmodes matiand diagonal
eigenfrequencies matrif2 . Firstly for the matrix inversion

can be generally written, that(AB)"=BA™? and
consequently also (ABC)™*=C™B*A™*. Concerning
equation (1.4) for flexible modes it is valid sinareously,

IV. RESIDUALMODE FORCOUPLINGOFSTRUCTURAL
SUBSYSTEMS

The computer aided design of machines often makeadis
analysis of dynamical properties of composed systempact
of simplified models of particular subsystems. Example of
such task can be the optimization of mechanical hinac
properties in many positions across the workspdge The
interconnection of models of two mechanical parts
(subsystems) is an analogy of the interconnectfdgheomodel
of mechanical system and the controller in the lbae# loop.
It is well known in the structural control contexhat the
closeness of the resulting behaviour of the model the
original composed mechatronic system is signifigant
influenced by the feedthrough components. The istiea
values of the “system zeros” caused by neglectihghe
feedthrough components are discussed e.g. in [i§.Wrong
positions of the model zeros consequently induae@alistic
dynamic properties of the composed mechatronicatesy
with the feedbacks. The lesson learned is, thas aisthe

can be further simplified thanks to thecontext of subsystem modelling of structures thexifierough

components shouldn’t be neglected. The intercoioreof the
substructures into one entity can be seen as t@atyersion
of the feedback loop closure.

The optimization of the system dynamical propertisisig
computations with interconnected simplified substices
takes into account two main goals — closenesseo$ithplified
and original system together with computationatefhcy.

The idea of interconnection will be further demoated

that ©2 =VTKV . Further starting from the identity can beUsing simple scheme (Fig. 2). Let the subsysteansdl Il are

stepwise concluded
K=k
K1 =w ik ST T

K =V(V’1K ’1(VT)’1)VT 39)

K=v(vTkv VT

G=Kk=v(e?]'VT =va?yT =ZN:%
i=1 i

connected in points A and B by two springs k. From the
point of view of equations (1.8) and (3.1) the inpector u of
each subsystem is composed from interconnectiore$om
springs, whereas the output vecyoris composed from

displacements of point A or BX, yA]", [xs V&]")-
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A

Fig. 2: A simple scheme of two connected bodies.

From displacement of connected points can be difinees
in springs like

Fx= k("' xg =" Xa)
Fy=k,("yg =" ya)

Each body (system) is described by the state-space
in modal coordinates. The body | will be descrilasdollows

(4.1)

10 0 '0,0 0 0oo0['Q'q
"G, -'g, 00 0 00| 'g
S|l oo i Fol,
'Q,'q;|7| 0 0.0 'Q0]'Q'y
"4 0 0.-'Q; 00| 'g (4.2)

| 0 0..0 0~ :

_.0

By

. |

0 [U]

IBj

Outputs of the state-space system are coordinitbes o
connecting point of the body “A”

AN
4 'Q (o
| 'V .
e
X :
L A}: 'Vl |V2 '0.'q, "’[I DSUB,SPA][U] (4.3)
Ya g, Vg | 1%
0 o N

Whereu contains interconnection forces

'u :{Ej (4.4)
and
"y :{: Ej (4.5)

There is the second body (ll) described in théagyawith
the previous descriptions of the body (1).

All deformations in the static analysis on the bedn be
determined using the stiffness matix vector of force$ and
vector of deformations from the equation

Kx = f (4.6)
like
x=K™f =Gf 4.7

whereG is the compliance matrix of the propriate body.

Sparse matrices are generally used for FEM moQelly. a
few components from matri@ are needed and they can be
solved from term

KG =1

The procedure of computation for only one desired
component of th& matrix is simple for sparse matrices,
because the vector of forces contains zeros arydone!
nonzero element as follows

Kx =[0 10 ..
It is a system of linear equations which can bgexbfast.
Determining the paiDg,g o, iS also easily (3.10), because it

compounds of a small part 6&f matrix and a subspace of
n T

3 ViVi
2

j=1 Qi

slave eigenmodes.

(4.8)

(4.9)

Coordinates of the body Il can be evaluated aneddlgiwith
term (4.3). We will become four equations for canates
[XA yA]T and [XB yB]T :

Equation (4.3) providing coordinates of the poiat Will be
completed with equations for the point “B”. Terrh@SUB’SPA

and " Dg g spa Will be divided into four elements

I I
I —| D11 Dy
Dgyg,sa —L D.'D (4.10)
21 Y22
and
Il Il
I —| Di1 Dy
Daug,sa —{“ DD (4.11)
21 Yoo
These four equations will be rewritten in the form
Covg |
1Y
"o
| | H
Viw g Vam o o o o of,
'Q, 'Qpn Q' G
] IV \V I
,i‘* ‘é‘“ ‘(;Am o o0 0. o of U
I XA ! " My Iy gt *
B 0 0. 0 02 . &g
! Y8 " Q; " Q, ! Gy
V, V, H
0 0. 0 0 Hgﬁl 0. “g-y;" ||Q.H
n Qg
1 1 “q
_kxIDu _ky|D12 kx‘Du ky‘Dlz ‘XA
. _kxID21 ‘kyIDzz kx‘D21 ky‘DZZ A (412)
ka D1y kyH D, _ka Dyy _ky“ Dy, " Xg
k><HDz1 kyHDzz _kaDZI ‘ky”Dzz "yg
symbolically
Xpg =Vag0ag t DagXag (4.13)

where “m” is the number of eigenmodes of the sydtand
“n” of the system II.

corresponding to coordinates of points A and B and
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This term is resolved by the rearranging of theatign

Xpg = (I = Dpg) Vagliag (4.14)
These coordinates are after resolving substitutexdthe
interconnection forces (4.1) to the original couldgstems of

bodies in inputs u and' u (4.2).

Two bodies were generated (Fig. 3) by FEM and after
connection are used for the simple practical detnatisn of
the properties.

17
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Fig. 3: Connected bodies

Both bodies are described in modal coordinatesplegtral
and eigenmodes matrices. These matrices were aséad
types of reduction. The first reduction is reductiy
truncation (TRU) of slave modes and the seconcebdyction
including the residual term (SPA). Interconnecfioiges are
also generated by these methods. There are obdeighed
differences if the TRU or SPA systems are used. @ig

I I | | I |
3 | | [ | | —® Modal reduction (TRU) |,
m | | | | | *  Modal reduction (SPA) |!
- e B
= S e
8 I I I I I I I I
3 I I I I I I I I
R i e e
g I I I I I I I I
& I I I I I I I I
> Lo oo
1.5 \ -

é I I | ¢ Y I I |
El I I I I I I I
3 I I I I I I I
S I I I I I I I
g g9~~~ 71-~79-"~ [ L N R
T I I I I IS I I
5 I I I I I I
c I I I I I I
2 05 ——t-——d—-——4-+-—4-@ 4L -4 -
2 | 9 | | I
>

] [ T | T | | I
[a]

o) | [
ol—e 2 j‘ DA S S U s $ %
0 2 4 6 8 10 12 14 16 18 20

Number of eigenfrequency

Fig. 4. Erors of first 20 eigenfrequencies for cected bodies
modeled by two types of reductions SPA/TRU

It is clearly shown (Fig. 4) that the system congabBom the
SPA reduced parts reaches by far better resultswith the
TRU reduced parts. The number of modes of thecextiu
parts is the same (30) for both versions (SPA/TRU).

V.CONCLUSION

The systematical analysis of the reduction of tlaegéd
structures using the singular perturbation appreatiom (SPA)
for the interconnected subsystems has been presente
proportionally damped systems have been considierdéde
special modal form identical to the almost balantmun of
the model. The residual modes have been efficiawiuated
for the different types of outputs, namely positieelocity and
acceleration form. The evaluation of SPA feedthtoug
matrices for the acceleration as well as for th&tfwm outputs
we need only the reduced system eigenmodes insteatl
eigenmodes of the original large system. Two maigedts of
the paper are the efficiency of the algorithms #edaccuracy
of the coupled reduced model with respect to thgiral large
model. The efficient algorithm of the connectiorsabsystems
is presented and the significant improvement ofabeuracy
with respect to the interconnection of the trundatebsystems
have been demonstrated.
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