
1

PRG – PROGRAMMING ESSENTIALS
1

Lecture 12 – Testing
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

12/01/2018 Michal Reinštein, Czech Technical University in Prague



2

ADMIN – FINAL EXAMS
2

12/01/2018 Michal Reinštein, Czech Technical University in Prague

• Multiple choice test, no materials as well as no devices allowed (papers 
will be provided, only own pen is necessary). Any use of materials, devices 
or cooperation during the exam will be awarded with 0 points (fail). 

• The content of the final exam will be based on the content of:
1. Lectures (not limited but including the slides released after each 

lecture)
2. Exercises during the labs
3. Relevant chapters of the [Wentworth2012] book (links to relevant 

chapters can be found at the bottom of lecture slides)

• Dates: 19.1. 2018, 26.1. 2018, 2.2. 2018, 9.2. 2018.
The exam starts sharp at 8:00. Use the Faculty information system to 
enroll

• Python multiple-choice tests to study (only relevant sections) 
http://www.sanfoundry.com/1000-python-questions-answers/



3

TESTING
3

12/01/2018 Michal Reinštein, Czech Technical University in Prague

• Including automated tests proves invaluable if the project 
becomes larger or if we have to return to it to make a small 
change after a long absence

• Tests serve as a form of documentation – by reading through 
test cases we can get an idea of expected behavior

• Test driven approach – writing tests first, thereby creating a 
specification for what the program is supposed to do, and 
filling in the actual program code afterwards

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



4

SELECTING TEST CASES
4

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• Two major approaches: black-box or glass-box testing

• In black-box testing treat tested function like an opaque 
“black box” – only think about what the function is supposed 
to do
(strategies: equivalence testing, boundary value analysis)

• In glass-box testing pick test cases by analyzing the code 
inside our function
(strategies: path coverage, statement coverage)



5

TESTING
5

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



6

TESTING
6

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



7

TESTING
7

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



8

TESTING
8

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



9

TESTING
9

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



10

TESTING
10

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



11

TESTING
11

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



12

TESTING
12

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



13

TESTING
13

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



14

TESTING
14

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



15

TESTING
15

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



16

TESTING
16

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



17

TESTING
17

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



18

TESTING
18

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



19

TESTING
19

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE: courtesy of Petr Posik BE5b33PR 2016/2017



20

UNITTESTS
20

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• Advanced framework for testing – python unittest module

• Put all tests in a file hierarchy which is separate from our main 

program

• Create a test module for each program module and put them 

all in a separate test directory



21

UNITTESTS
21

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing



22

UNITTESTS
22

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing



23

UNITTESTS
23

12/01/2018 Michal Reinštein, Czech Technical University in Prague
SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• In the unittest package, the TestCase class serves as a 
container for tests to share data

• For each collection of tests define a class that inherits 
from TestCase and define all tests as methods on that class

• All the tests in this TestCase test the same class, and there is 
one test per method (including the initialization method)

• Multiple TestCase classes to test each of own classes



24

UNITTESTS
24

12/01/2018 Michal Reinštein, Czech Technical University in Prague
SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• Set up the class to be tested in the setUp method 
(special method will be executed before each test is run)

• Use tearDown method to execute statements after test is run
• Use the assertion methods of TestCase to check if certain 

things are true about our program behavior
(as soon as one assertion statement fails, the whole test fails)



25

UNITTESTS
25

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• Many ways of running the tests
• To run all the tests from a single file by adding unittest.main() 

at the bottom of test_rules.py and execute as a script
• To execute the unittest module on the commandline and use 

it to import and run some or all of our tests



26

UNITTESTS
26

12/01/2018 Michal Reinštein, Czech Technical University in Prague
SOURCE http://python-textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

• The unittest package allows to group some or all of our tests 
into suites

• This way many related tests can be executed at once

• EXAMPLE: One way to add all the tests from 
the TestPerson class to a suite is to add for example suite() 
function to the test_rules.py file



27

PRG – PROGRAMMING ESSENTIALS
27

Lecture 13 – Exceptions
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal Reinštein
Czech Technical University in Prague, 

Faculty of Electrical Engineering, Dept. of Cybernetics, 
Center for Machine Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

12/01/2018 Michal Reinštein, Czech Technical University in Prague



28

EXCEPTIONS
28

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• Whenever a runtime error occurs, it creates 
an exception object.

• The program stops running at this point and Python prints out 
the traceback, which ends with an error message describing 
the exception that occurred

• Exception – An error that occurs at runtime.
• Handle an exception – To prevent an exception from causing 

our program to crash, by wrapping the block of code in 
a try ... except construct.

• Raise – To create a deliberate exception by using 
the raise statement.



29

EXCEPTIONS
29

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• The error message on the last line has two parts:

the type of error before the colon, and specifics about the 

error after the colon



30

EXCEPTIONS
30

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• To execute an operation that might cause an exception but 

does not stop the program

• Handle the exception using the try statement to “wrap” a 

region of code

• EXAMPLE: prompt the user for the name of a file and then try 

to open it. If the file does not exist, we do not want the 

program to crash



31

EXCEPTIONS
31

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• The try statement has three separate clauses, or parts, 

introduced by the keywords try ... except ... finally
• Either the except or the finally clauses can be omitted

• The try statement executes and monitors the statements in 

the first block and If no exceptions occur, it skips the block 

under the except clause

• If any exception occurs, it executes the statements in 

the except clause and then continues



32

EXCEPTIONS
32

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• ERRORS – multiple except clauses to handle different kinds of 

exceptions https://docs.python.org/3/tutorial/errors.html



33

EXCEPTIONS
33

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• If the program detects an error condition, an exception can be 

raised manually.

• EXAMPLE: input from the user and checks that the number is 

non-negative:



34

EXCEPTIONS
34

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• Line 5 creates an exception object – ValueError object in this 
case that encapsulates specific information about the error

• EXAMPLE: Assume that in this case function A called B which 
called C which called D which called get_age:

• The raise statement on line 6 carries this object out as a 
kind of “return value”, and immediately exits 
from get_age() to its caller D

• Then D again exits to its caller C, and C exits to B and so 
on, each returning the exception object to their caller, until 
it encounters a try ... except that can handle the exception



35

EXCEPTIONS
35

12/01/2018 Michal Reinštein, Czech Technical University in Prague

SOURCE http://openbookproject.net/thinkcs/python/english3e/exceptions.html

• It is often the case that lines 5 and 6 (creating the exception 
object, then raising the exception) are combined into a single 
statement

• Those are two different and independent things, so it makes 
sense to keep the two steps separate



36

REFERENCES
36

12/01/2018 Michal Reinštein, Czech Technical University in Prague

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-
textbok.readthedocs.io/en/1.0/Packaging_and_Testing.html#testing

(released under CC BY-SA 4.0 licence Revision 8e685e710775)

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under GNU Free Documentation License Version 1.3)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers) 
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version 

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/


