PRG — PROGRAMMING ESSENTIALS

(e

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

P
ADMIN - FINAL EXAMS @
e Multiple choice test, (papers

will be provided, only own pen is necessary). Any use of materials, devices
or cooperation during the exam will be awarded with 0 points (fail).

* The will be based on the content of:
(not limited but including the slides released after each

lecture)
during the labs
of the [Wentworth2012] book (links to relevant

chapters can be found at the bottom of lecture slides)

: 19.1. 2018, 26.1. 2018, 2.2. 2018, 9.2. 2018.
The exam starts sharp at 8:00. Use the Faculty information system to

enroll

* Python multiple-choice tests to study (only relevant sections)

TESTING @

* Including proves invaluable if the project
becomes larger or if we have to return to it to make a small
change after a long absence

e Tests serve as a form of — by reading through
test cases we can get an idea of expected behavior

e Test driven approach — , thereby creating a
for what the program is supposed to do, and

filling in the actual program code

C
SELECTING TEST CASES L_,,
 Two major approaches: or testing
* In testing treat tested function like an opaque
“black box” — only think about what the function is supposed
to do
(strategies: ,)
* In testing pick test cases by analyzing the code

inside our function
(strategies:

TESTING @ s

Example: sum digits ()

Specifications: In module tools.py, create function sum digits (string) which return the sum of all digits in string.

Solution: We create the required module as follows:

$%writefile tools.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

Writing tools.py

Are we finished? How do we test the code?

TESTING

Option 1: Try to use it in Python shell

>>> from tools import sum digits
>> sum digits('l, 2, 3, dee, dah, dee')

 We have tested a single test case.
+ We have to manually check the correctness of the result.
« What if we want to run the test again?

TESTING

Option 2: Including the test code directly in the module

The code previously written on Python console can be stored directly with the module (or in some other module).

t%writefile tools2.py
def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789"':
sum += int (ch)
return sum

if name == " main ":
All the code below is executed only when the file is run as a script.
print (sum digits('l, 2, 3, dee, dah, dee'))

Writing tools2.py

TESTING

import tools2 # "Nothing" happens when we import the module (desired),

srun tools2.py # ... but the testing code is executed when we run the module!

6

* We still test a single test case only.
« We still have to manually check the correctness of the result.
« But we can run the test easilly. As many times as we want!

TESTING

Option 3: Check the correctness of the result automatically

Instead of mere printing out the result, we can check its correctness!

$%writefile tools3.py
def sum digits(string):
""n"Return the sum of all digits in the string"""
sum 0
for ch in string:
if ch in '012346789"':
sum + int (ch)
return sum
if name_ == " main_ ":
observed = sum digits('l, 2, 3, dee, dah, dee')
expected = 6
if observed == expected:
PELTICI{(E)
else:
print ('Test failed.')
print ('- Expected:', str (expected))
print ('- But got: ', str(observed))

Writing tools3.py

TESTING @

srun tools3.py

o We still test a single test case only.

« But we do not have to manually check the correctness of the result, we can immediately see if the test passed or not.
¢ And we can run the test easilly. As many times as we want!

10

TESTING

Our own modaule for testing!

The process of checking the correctness of a result may be extracted to a function that will

« allow us to write tests using only a little code,
e be part of a module that can be reused in many projects.

Let's create module testing with function test _equal () which shall have 3 parameters:

e the observed and expected values, and
¢ an optional name of the test.

The function shall print

e " " if the test passes, or
¢ an informative message about the failure, if the test fails.

11

TESTING

$%writefile testing.py
import sys

def quote (name) :
if name:
namc - "mrn + name + " "
return name

def test equal (observed, expected, name='"):
"""Compare the observed and expected results"""
if observed == expected:
print('.', end="'")
else:

linenum = sys. getframe(l).f lineno # Get the caller's line number.
print ("\nTest {}at line {} FAILED:".format (quote (name), linenum))
print ("- Expected:", str (expected))

print ("- But got: ", str(observed))

Writing testing.py

TESTING

With the help of our testing module, we can rewrite the tools module as follows:

$%writefile tools4.py
from testing import test equal

def sum digits(string):
"""Return the sum of all digits in the string"""
sum = 0
for ch in string:
if ch in '012346789':
sum += int (ch)
return sum

if name == "_ main_ ":
test equal (sum digits('l, 2, 3, dee, dah, dee'), 6, 'Test 1')

Writing toolsd.py

13

TESTING @

run tools4d.py

We still test a single test case only.

But we do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
And we do not need to write much code to test a single case!

And we can run the tests easilly. As many times as we want!

14

TESTING

Adding more tests

When we have more test cases, we can add them either

e totheif name ==" main_ " section of the main file, or

* to a separate testing module.

Let's create a separate testing module.

t%writefile test tools.py
from testing import test equal
from tools4 import *

def test sum digits():

test equal (sum digits(''), O
test_equal (sum_digits('0'),
test _equal (sum _digits('l'),
test equal (sum digits('2'),
test _equal (sum _digits('3'),
test equal (sum digits('4'),
test _equal (sum _digits('S'),
test_equal (sum_digits('6'),
test_equal (sum _digits('7'),
test equal (sum _digits('8'),
test_equal (sum _digits('9'),

test _equal (sum digits('l, 2,

Run the test suite
test_sum digits()

Writing test tools.py

~ ~ ~ ~

-~

~ ~ ~

OO0 s WN K= O~
-

W~

'Test empty string')

’

'Test
'Test
'Test
'Test

dee,

0')
1)

9')
dah, dee'), 6,

'Non trivial test')

15

TESTING

Test 'Test 5' at line 11 FAILED:
- Expected: 5
- But got: O

Ha! We have an error in our code! Can you find it?

With the help of a testing framework:

e We can easilly build comprehensive test suites.

Other testing frameworks

Our module testing is not an original idea. Python has several popular testing frameworks, e.g. modules

e doctest and
e unittest.

16

We do not have to manually check the correctness of the result, we can immediately see if the test passed or failed.
We do not need to write much code to test a single case!
We can run the test suite easilly. As many times as we want.

TESTING

Testing the code using doctest

e Create the habit to include examples of the functions' usage in their docstrings (see below).
e Module doctest allows you to easilly execute the examples from the docstrings:

$%writefile modulewithdoctests.py
def average(x,y):
"n""Return the average of 2 numbers.

>>> average (10, 20)
15.0

>>> average (1.5, 2.0)
e s

moan

return (x + vy) / 2

if name == " main_ ":
import doctest
doctest.testmod (verbose=True)

Writing modulewithdoctests.py

17

TESTING

@

Then, if you run the module, the tests are executed automatically and compared with their expected results:

$run modulewithdoctests.py

Trying:
average (10, 20)
Expecting:
15.0
ok
Trying:
average(l.5, 2.0)
Expecting:
1.75
ok
1l items had no tests:
__main__
1l items passed all tests:
2 tests in _ main__.average
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

18

TESTING @

19

Summary

e Testing your own code is extremely important!

¢ You should learn several ways how to test your code.

e Using a testing framework, from simple ones (like our testing) to comprehensive ones
(like unittest), gives you an considerable advantage!

e Testing frameworks like unittest are common to many other languages. If you learn it for
one languaga, you will profit from it also in the other languages.

UNITTESTS

(8

ourprog/
ourprog/
__init__ .py
db.py
gui.py
rules. py
test/
__init__.py
test_db.py
test _gui.py
test _rules.py
setup.py

Advanced framework for testing — python
Put all tests in a file hierarchy which is
program

Create a

allin a

20

module
from our main

and put them

UNITTESTS

Suppose that our rules.py file contains a single class:

class Person:
TITLES = ('Dr', 'Mr', 'Mrs', 'Ms')

def __init__(self, name, surname):
LT.name = name
=1 f.surname = surname

def fullname(self, title):
if title not in IT.TITLES:

raise ValueError("Unrecognised title:

return "%s %s %s" % (title, 1f.name,

'%s'" % title)

.surname)

21

UNITTESTS

Our test_rules.py file should look something like this:

import unittest
from ourprog.rules import Person

class TestPerson(unittest.TestCase):

def setUp(self):
self.person = Person("Jane", "Smith")

def test_init(self):
self.assertEqual(self.person.name, "Jane")
self.assertkEqual(self.person.surname, "Smith")

def test_fullname(self):
self.assertEqual(self.person.fullname("Ms"), "Ms Jane Smith")
self.assertEqual(self.person.fullname("Mrs"), "Mrs Jane Smith")
self.assertRaises(ValueError, self.person.fullname, "HRH")

http://python-textbok.readthedocs.io/en/1.0/Packaging and Testing.html#testing

22

UNITTESTS

(8

23

import unittest
from ourprog.rules import Person

class TestPerson(unittest.TestCase):

def setUp() -

.person = Person("Jane", "Smith")

def test_init():
.assertEqual(.person.name, "Jane")
.assertEqual(.person.surname, "Smith")

def test fullname():
.assertEqual(.person. fullname("Ms"), "Ms Jane Smith")
.assertEqual(.person. fullname("Mrs"), "Mrs Jane Smith")
.assertRaises(ValueError, .person. fullname, "HRH")

In the package, the class serves as a

container for tests to share data

For each collection of tests define a class that inherits

from and define all tests as methods on that class
All the tests in this test the same class, and there is
one test per method (including the initialization method)
Multiple classes to test each of own classes

(8

B UNITTESTS

import unittest 24
from ourprog.rules import Person
class TestPerson(unittest.TestCase):
def setUp() -
.person = Person("Jane", "Smith")
def test_init():
.assertEqual(.person.name, "Jane")
.assertEqual(.person.surname, "Smith")
def test fullname():
.assertEqual(.person. fullname("Ms"), "Ms Jane Smith")
.assertEqual(.person. fullname("Mrs"), "Mrs Jane Smith")
.assertRaises(ValueError, .person. fullname, "HRH")
* Set up the class to be tested in the method
(special method will be executed before each test is run)
e Use method to execute statements after test is run
* Usethe of to check if certain

things are true about our program behavior
(as soon as one assertion statement fails, the whole test fails)

LK

I

UNITTESTS

(e

25

if __name__ == '__main,
unittest.main()

python
python

python
python
python

python

-m unittest
-m unittest discover

-m unittest ourprog.test.test_rules
-m unittest ourprog.test.test_rules.TestPerson
-m unittest ourprog.test.test_rules.TestPerson.test_fullname

-m unittest -v test_rules

Many ways of running the tests

To run all the tests from a single file by adding

at the bottom of test_rules.py and

To execute the unittest module on the and use
it to import and run some or all of our tests

@ ‘é*}.

M&ﬁ UNITTESTS

M%

(8

26

def suite():
suite = unittest.TestSuite()
suite.addTest(TestPerson)
return suite

* The package allows to group some or all of our tests
Into suites
* This way many related tests can be executed at once

e EXAMPLE: One way to add all the tests from
the TestPerson class to a suite is to add for example suite()
function to the test_rules.py file

PRG — PROGRAMMING ESSENTIALS

(e

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

27

C
EXCEPTIONS L_,,
28
 Whenever a occurs, it creates
an exception object.
* The at this point and Python prints out
the traceback, which ends with an describing

the exception that occurred
— An error that occurs at runtime.
— To prevent an exception from causing
our program to crash, by wrapping the block of code in
a construct.
— To create a deliberate exception by using
the raise statement.

EXCEPTIONS @

(Q

>>> print(55/0)
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

>>> a = []
>>> print(a[5])
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
IndexError: list index out of range

>>> tup = ("a", "b", "d", "d")
>>> tup[2] = "c"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

* The on the last line has two parts:
the before the colon, and about the
error after the colon

;‘1 Q/T%\' N\
iz EXCEPTIONS &
J ﬁ&f\j _
30
filename = input("Enter a file name: ")
try:
f = open(filename, "r")
except:

print("There is no file named", filename)

* To execute an operation that might cause an exception but
does not stop the program

* Handle the exception using the try statement to “wrap” a
region of code

e EXAMPLE: prompt the user for the name of a file and then try
to open it. If the file does not exist, we do not want the
program to crash

(8

EXCEPTIONS

The

31

def exists(filename):
try:
f = open(filename)
f.close()
return True
except:
return False

has three separate clauses, or parts,

introduced by the keywords

Either the

or the clauses can be omitted

The try statement executes and in
the first block and If no exceptions occur, it skips the block
under the except clause

If any exception occurs, it executes the statements in

the

and then continues

EXCEPTIONS @

The function we’ve just shown is not one we’d recommend. It opens and closes the file, which is
semantically different from asking “does it exist?”. How? Firstly, it might update some timestamps
on the file. Secondly, it might tell us that there is no such file if some other program already
happens to have the file open, or if our permission settings don’t allow us to open the file.

Python provides a module called os.path within the os module. It provides a number of useful
functions to work with paths, files and directories, so you should check out the help.

import os

This is the preferred way to check if a file exists.
if os.path.isfile("c:/temp/testdata.txt"):

— multiple except clauses to handle different kinds of
exceptions

32

)

EXCEPTIONS @

(Q

33

def get_age():
age = int(input("Please enter your age: "))
if age < 0:
Create a new instance of an exception
my error = ValueError("{0} is not a valid age".format(age))
raise my error
return age

>>> get_age()
Please enter your age: 42
42
>>> get_age()
Please enter your age: -2
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>

File "learn_exceptions.py", line 4, in get_age

raise ValueError("{0} is not a valid age".format(age))

ValueError: -2 is not a valid age

If the program detects an error condition, an exception can be

manually.
EXAMPLE: input from the user and checks that the number is

non-negative:

P~
EXCEPTIONS @

34

* Line 5 creates an - in this
case that encapsulates specific information about the error

e EXAMPLE: Assume that in this case function A called B which
called C which called D which called get_age:

* The raise statement on line 6 carries this object out as a
kind of “return value”, and immediately exits
from get_age() to its caller D

* Then D again exits to its caller C, and C exits to B and so
on, each returning the exception object to their caller, until
it encounters a try ... except that can handle the exception

) o~
a8 EXCEPTIONS @
1/’ M@ -
35
raise ValueError("{0} is not a valid age".format(age))
* |tis often the case that lines 5 and 6 (
object, then) are combined into a single
statement
Those are , so it makes

sense to keep the two steps separate

Pm)

REFERENCES N

—

A

36

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

