lec-othercollections

December 8, 2016

1 Collection data types

Tomas Svoboda, Petr Posik Department of Cybernetics, FEE CTU in Prague EECS, BE5B33PRG:
Programming Essentials, 2016

Requirements (we already know): * Strings, tuples, lists * Loops

Why? * Power * Spam filter task

2 Warm up a bit...

In [1]: from IPython.display import Image
Image ('symbols_collection.png')

1P8MOBO\/

Ooutl[1l]:

3 Collections we already know: Sequence types

¢ Sequences of items. They support

* membership operator in,

* querying for size (len () ),

¢ indexing and slices ([]), and are

e iterable.

* string: imutable ordered sequence of characters

e tuple: imutable ordered sequence of items of any data type
e list: mutable ordered sequence of items of any data type



3.1 in-example

In [2]: a = [2,3,4]
b = "234"
c = (2,3,4)

3.2 slices [:]

In [3]: al:]
al-2:]1 == [3,4]
Oout[3]: [2, 3, 4]

Out[3]: True

4 Settypes

¢ Set types support

¢ membership operator (in),

* querying for size (1len () ), and are
iterable.

Set types

Only hashable objects may be added to a set.

4.1 Basic set usage

Creating a set of letters from a sequence of letters:

In [4]: s = set('abracadabra')
S

OU.t[4]I {la|’ lbl, lc|, ldl, Irl}
Iterating over set items:

In [5]: for i in s:
print (i, end=' ")

abrcd

Membership checking;:

They also support set operations (comparisons, union, intersection, subset).
set: mutable unordered collection of unique items of any data type
frozenset: immutable unordered collection of unique items of any data type

When iterated over, set types provide their items in an arbitrary order.

Immutable data types are hashable (int, float, str, tuple, frozenset).
Mutable values are (usually) not hashable (list, dict, set), since their contents can change.



Oout[6]:

In

'a' in s, 'z' in s

(True, False)

Adding an item to a set:

[7]:

Oout[7]:

s.add('z")
S

{la’, Ibl, 'C', 'd’,

Removing an item from a set:

Oout[9]:

s.discard('a') # Nothing happens if 'a'

S

s.add ((2,3))
S

4.2 Set operations

# Raises KeyError if 'b'

set ('essentials')

({lal, 'g'l 'il, lm', lnl, IOI, lp', 'r

In [10]: set('programming'),
Oout[10]:
Union:
In [11]: set('programming')
Out[1l1l]: {'a', 'e', 'g', 'i'
Intersection:
In [12]: set ('programming')
Out[12]: {'a', '"i', 'n'}
Difference:
In [13]: set('programming')
Out[13]: {'g', 'm', 'o', 'p'

In

Symmetric difference:

[14]:

Oout[1l4]:

set ('programming')

{'el, lg', lll, lml

&

A

set ('essentials')

set ('essentials')

lr|}

set ('essentials')

not in s

not in s


https://en.wikipedia.org/wiki/Symmetric_difference

4.3 Set “comparisons”

Are two sets disjoint? (I.e., is their intersection empty?)

In [15]: set('programming') .isdisjoint (set ('essentials'))

Out[15]: False

Is one subset of another?
In [16]: set('pro') <=
Oout[l6]: True

Is one superset of another?
In [17]: set('pro') >=

Out[1l7]: False

set ('programming') # Or, set('pro').issubset (set ('programm:

set ('programming') # Or, set('pro').issuperset (set ('prograr

4.4 Setexample: unique items

Having a list of (e.g.) words, how do we get a list of unique words?

In [18]: words = 'one three two one two one'.split()

print (words)

['one', 'three', 'two',

In [19]: unique_words =

'one', 'two', 'one']

list (set (words))

print (unigque_words)

['three', 'one', 'two']

Note, however, that the new list does not (in general) preserve the order of words in the origi-

nal list.

4.5 Set example: eliminate unwanted items (1)

Having a list of file names,
Itruth.txt)?

In [20]: orig_filenames
orig_filenames

Outf[20]: ['£1', 'f2', !

how do we get rid of some of them (!prediction.txt,

= '"fl f2 !prediction.txt £3 fd.ext !truth.txt £5'.split ()

!prediction.txt', 'f3', 'fd.ext', 'l!truth.txt', 'f5']



In [21]: filenames = set (orig_filenames)
print (filenames)
for fname in {'!truth.txt', 'lprediction.txt'}:
filenames.discard (fname)
print (filenames)

{"!'prediction.txt', 'fd.ext', '£3', 'f5', 'f2', '"l!truth.txt', 'fl1'}
{"f4.ext', '£3', '£5', 'f2', '!ltruth.txt', 'fl1'}
{"fd4.ext', '£3', 'f£5', 'f2', 'f1'}

4.6 Set example: eliminate unwanted items (2)

Having a list of file names, how do we get rid of some of them (!prediction.txt,
ltruth.txt)?

In [22]: filenames = set (orig_filenames)
print (filenames)

{"!'prediction.txt', 'f4d.ext', '£3', 'f5', 'f2', '"!truth.txt', 'fl'}

In [23]: filenames = filenames - {'!truth. txt', '!prediction.txt'}
filenames

Out[23]: {'!truth.txt', 'f1', 'f2', '£3', 'f4.ext', 'f5'}

5 getting filenames

In [24]: import os
fnames = os.listdir('./data')
print (fnames)

['2852-0.txt', 'pglll2.txt', 'pglll2.txt~', 'pglb24.txt']

5.1 Set example: word analysis

In [25]: with open('./data/pglll2.txt','rt',encoding="utf-8') as f:
bookl_text = f.read()
with open('data/2852-0.txt', 'rt',encoding="'utf-8') as f:
book2_text = f.read()

In [26]: wordsl = bookl_text.split (

)
words2 = book2_text.split ()
)
)

unique_wordsl = set (wordsl
unique_words2 = set (words2
In [27]: len(unique_words2) /len (words?2)

Out[27]: 0.15836470701805194



6 Mapping types

* A mapping type is an unordered collection of key-value pairs. They support
¢ membership operator in,

* querying for size (1en () ), and are

e iterable.

¢ Only hashable (i.e. immutable) objects can be used as keys.

¢ Each key’s associated value may be of any data type.

6.1 Dictionary

Creating a dictionary:

In [28]: course = {'id': 'BES5B33PRG', 'nmame': 'Programming essentials', 'capacity':
course?2 = dict (id="'BE5B33PRG', name='Programming essentials', capacity=25)
course3 = dict([('id', 'BE5SB33PRG'), ('name', 'Programming essentials'),
coursed4 = dict(zip(('id', 'name', 'capacity'), ('BES5B33PRG', 'Programming

All the above methods create a dictionary with the same contents:

In [29]: course
Out[29]: {'capacity': 25, 'id': 'BESB33PRG', 'name': 'Programming essentials'}
In [30]: course == course? == course3 == coursei

Out[30]: True
Testing membership in a dictionary (the tested object is assumed to be a key):
In [31]: 'id' in course, 'BESB33PRG' in course
Out [31]: (True, False)
Querying a dictionary for a value:
In [32]: course['id'"]
Out[32]: 'BES5B33PRG'
Getting the lists of keys, values and key-value pairs:
In [33]: print(list (course.keys()))

print (list (course.values())
print (list (course.items ()))

)

["'name', 'id', 'capacity']
['"Programming essentials', 'BES5B33PRG', 25]
[ ("name', 'Programming essentials'), ('id', 'BES5SB33PRG'), ('capacity', 25)]



Adding new key-value pairs:

In [34]: course['lecturer'] = 'Svoboda'
print (course)

{"name': 'Programming essentials', 'lecturer': 'Svoboda', 'id':
Replacing a value for an existing key:
In [35]: course['lecturer'] = 'Posik'
print (course)
{'name': 'Programming essentials', 'lecturer': 'Posik', 'id':
Removing an item from a dictionary:
In [36]: del course['lecturer']
print (course)
{'"name': 'Programming essentials', 'id': 'BE5B33PRG',

6.2 Iterating over dictionaries

Iterating over keys:

In [37]: for key in course:
print (key, courselkey], end=' |

name Programming essentials | id BESB33PRG |
or

In [38]: for key in course.keys():
print (key, end=' | ")

name | id | capacity |
Iterating over values:

In [39]: for val in course.values():
print (val, end="' | ")

Programming essentials | BESB33PRG | 25 |

Iterating over key-value pairs:

In [40]: for item in course.items{() :
print (item[0], '=', item[l], end='
name = Programming essentials | id = BES5B33PRG

or, in a better way:

In [41]: for key, val in course.items () :
print (key, '=', wval, end=' | ")
name = Programming essentials | id = BE5B33PRG

capacity 25

")

| capacity =

| capacity

25

25

'BE5B33PRG',

'capacity': 25}

'BE5SB33PRG', 'capac

'capacit



6.3 dict.get () method

Returns * the value corresponding to the key, if the key exists in the dictionary, * None if key is
not in the dictionary and no default value is given, or * a default value, if key does not exist in the

dictionary and the default value is specified.

In [42]: print (course['id'])
BE5B33PRG

In [43]: print (course.get ('id"))
BE5B33PRG

Querying a value for a non-existent key:

In [44]: course

Out[44]: {'capacity': 25, 'id': 'BES5B33PRG',
In [45]: #print (course['univ'])

In [46]: print (course.get ('univ'))

None

In [47]: print (course.get ('id', 'CTU'"))
BESB33PRG

In [48]: print (course.get ('univ',

CTU in Prague

6.4 words analysis

'name': 'Programming essentials'}

# Raises KeyError

'CTU in Prague'))

line 7

In [49]: wf = {}
for word in wordsl:
File "<ipython-input-49-49f15779594d>",
SyntaxError: unexpected EOF while parsing



7 Counter

A special kind of a mapping type (dictionary).

Collection of elements which are stored as keys, and their counts are stored as values.

Values are counts, i.e. any integers, including negative.

Defined in collections module:

from collections import Counter

7.1 Creating a Counter

In [ ]: from collections import Counter
c = Counter () # a new, empty counter
c = Counter ('abracadabra') # a new counter from an iterable
c = Counter({'red': 4, 'blue': 2}) # a new counter from a mappling
c = Counter (cats=4, dogs=8) # a new counter from keyword args

7.2 Accessing Counter elements

* Use indexing as for dicts.
¢ For non-existing keys, Counter returns 0, instead of raising KeyError.

In [ ]: ¢ = Counter(['eggs', 'ham'])
print (c)
In [ ]: print(c['eggs'])

print (c['bacon'])

7.3 Counter.most_common ()

In [ ]: = Counter ('abracadabra')

c
c
In [ ]: c.most_common (3)

7.4 Adding and subtracting counters

In [ ]: ¢l = Counter ('abracadabra')
c2 = Counter ('simsalabim')
print (cl)
print (c2)

In [ ]: print(cl + c2)

In [ ]: print(cl - c2)

Note, there are no elements with negative values (that could be expected for s, i, m, ...).



7.5 Counter.update () and Counter.subtract ()

In [ ]: ¢ = Counter()
cl = Counter ('abrakadabra')
c2 Counter ('avada kedavra')

In [ ]: c.subtract (cl) # Negative counts
print (cl)
print (c)

In [ ]: c.update(c2)
print (c)

In [ ]: c.update(cl)

c.subtract (c2)
print (c)

8 Named tuple

Named tuple is still a tuple. You can use a named tuple everywhere you can use a tuple.
It adds the ability to refer to tuple items by names, in addition to indexing by numbers.
The closest relative to st ruct or record known from other programming languages.

¢ Usage:

from collections import namedtuple

# Create a custom tuple data type

Sale = namedtuple('Sale', 'customerid date productid quantity price')
# Create an instance of the new data type

sale = Sale(111, '2015-11-26"', 222, 3, 2.50)

¢ Function namedtuple creates a customized tuple data type:

— Arg 1: The name of the new data type.
- Arg 2: String with space-separated names, one for each item in our customized tuple.

8.1 Named tuple: Example 1

In [ ]: from collections import namedtuple

Sale = namedtuple('Sale', 'customerid date productid quantity price')
Sale(111, '2015-11-26', 222, 3, 2.50)

sale

# Now, you can access the individual items by indexing
print (sale[l], sale[2], sale[3])

print (sale[1:47)

# ... or by names

print (sale.date, sale.productid, sale.quantity)

10



In [ ]: # Create a bill consisting of several sales
sales = [Sale(111, '2015-11-26', 222, 3, 2.50),
Sale(111, '2015-11-26', 231, 1, 7.50),
Sale(111, '2015-11-26', 12, 5, 3.00)]

# Compute the total
total = 0
for sale in sales:
total += sale.quantity * sale.price
print ('Total: ${:.2f}'.format (total))

8.2 Named tuple: Example 2

You can also nest one named tuple inside another, there is nothing special about it.

In [ ]: from collections import namedtuple
Aircraft = namedtuple('Aircraft', 'manufacturer model seats')
Seating = namedtuple('Seating', 'min max')

aircraft = Aircraft ('Airbus', 'A320-200', Seating (100, 220))
print (aircraft)
print (aircraft.seats.max)

8.3 Extracting items of named tuples for printing

In [ ]: print(aircraft([0], aircraft[1l])
print (aircraft.manufacturer, aircraft.model)
print (
(
(

"{} {}'.format (aircraft.manufacturer, aircraft.model))
print ('{0.manufacturer} {0.model}'.format (aircraft))
print (' {manufacturer} {model}'.format (x+xaircraft._asdict()))

9 Summary

¢ The rich set of data collections is one of the main reasons for the Batteries included! Python
slogan.
¢ Even more specialized data types can be created by using classes. See next lectures!

10 Notebook config
Some setup follows. Ignore it.

In [ ]: from notebook.services.config import ConfigManager
cm = ConfigManager ()
cm.update ('livereveal', {
'"theme': 'Simple',
'transition': 'slide',

11



In

})

% sHTML
<style>

'start_slideshow_at': 'selected',

'width': 1268,
'height': 768,
'minScale': 1.0

.reveal #notebook-container { width: 90% !important; }
.CodeMirror { max-width: 100%
pre, code, .CodeMirror-code,

font
}

—family: "Consolas",

pre, code, .CodeMirror-code {

font
}
.reveal

font

line
}
</style>

.code_cell {

12

!'important; }

.reveal pre, .reveal code {

"Source Code Pro",

—-size: inherit !important;

-size: 130% !'important;
—height: 130% !important;

"Courier New",

Courier,

mor



	Collection data types
	Warm up a bit …
	Collections we already know: Sequence types
	in - example
	slices [:]

	Set types
	Basic set usage
	Set operations
	Set ``comparisons''
	Set example: unique items
	Set example: eliminate unwanted items (1)
	Set example: eliminate unwanted items (2)

	getting filenames
	Set example: word analysis

	Mapping types
	Dictionary
	Iterating over dictionaries
	dict.get() method
	words analysis

	Counter
	Creating a Counter
	Accessing Counter elements
	Counter.most_common()
	Adding and subtracting counters
	Counter.update() and Counter.subtract()

	Named tuple
	Named tuple: Example 1
	Named tuple: Example 2
	Extracting items of named tuples for printing

	Summary
	Notebook config

