
1

PRG	– PROGRAMMING	ESSENTIALS
1

Lecture	9	– Classes,	Objects,	OOP
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal	Reinštein
Czech	Technical	University	in	Prague,	

Faculty	of	Electrical	Engineering,	Dept.	of	Cybernetics,	
Center	for	Machine	Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague



2

CLASSES,	OBJECTS
2

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Object-oriented	programming	languagemeans	it	provides	
features	supporting object-oriented	programming (OOP)

• OOP	main paradigm used	in	the	creation	of	new	software	to	
handle	rapidly	increasing	size	and	complexity	and	to	make	
easier	to	modify	and	update	

• In	Python,	everything	is	an	object	– everything	is	an	instance	
of	some	class

• In	procedural	programming	the	focus	is	on	writing	functions	
or procedures which	operate	on	data

• In	object-oriented	programming	the	focus	is	on	the	creation	
of objects which	contain	both	data	and	functionality	together



3

OOP	TERMINOLOGY
3

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Attribute:	named	data	item	that	makes	up	an	instance
• Class:	compound	type	interpretable	as	a	template	for	the	
objects	that	are	instances	of	it	

• Class:	is	a	prototype	for	an	object that	defines	a	set	of	
attributes	that	characterize	any	object	of	the	class.	

• The	attributes (class	variables	and instance	variables)	and	
methods are	both	accessed	via	dot	notation

• Class	variable:	variable	that	is	shared	by	all	instances	of	the	
class	(class	variables	are	defined	within	a	class	but	outside	any	
of	the	class's	methods;	they	are	not	used	as	frequently	as	
instance	variables	are)



4

OOP	TERMINOLOGY
4

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Data	member:	class	variable	or	instance	variable	that	holds	
data	associated	with	a	class	and	its	objects

• Initializer	method:	special	method	in	Python	(called __init__)	
that	is	invoked	automatically	to	set	a	newly	created	object’s	
attributes	to	their	initial	values

• Instance:	object	whose	type	is	of	some	class
(instance	and	object	are	used	interchangeably)

• Instantiate:	procedure	necessary	to	create	an	instance	of	a	
class	and	by	running	its	initializer



5

OOP	TERMINOLOGY
5

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Method:	a	function	that	is	defined	inside	a	class	definition	and	
is	invoked	on	instances	of	that	class

• Object:	a	compound	data	type	that	is	often	used	to	model	a	
thing	or	concept	in	the	real	world

• Object:	bundles	together	the	data and	the	operations that	are	
relevant	for	that	kind	of	data

• Instance	variable:	variable	defined	inside	a	method	that	
belongs	only	to	the	current	instance	of	a	class

• Inheritance:	transfer	of	the	characteristics	of	a	class	to	other	
classes	that	are	derived	from	it



6

CLASSES,	OBJECTS
6

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• EXAMPLE:	create	our	own	user-defined	class:	the Point
• Consider	the	concept	of	a	mathematical	point:	in	two	
dimensions,	a	point	is	two	numbers	(coordinates)	that	are	
treated	as	a	single	object

• A	natural	way	to	represent	a	point	in	Python	is	with	two	
numeric	values	– how	to	group	these	two	values	into	a	
compound	object?

• Define	a	new class



7

CLASSES,	OBJECTS
7

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Class	definitions	usually	near	the	beginning of	the	program	
(convention:	after	the import statements)

• No	need	to	put	every	class	into	its	own	module
• Syntax	rules	for	a	class	definition	are	the	same	as	for	other	
compound	statements

• Header	begins	with	the	keyword class,	followed	by	the	name
of	the	class,	and	ending	with	a	colon

• Levels	of	indentation tell	us	where	the	class	ends



8

CREATING	CLASSES
8

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

• The class statement	creates	a	new	class	definition.	
• The	class	has	a	documentation	string,	which	can	be	accessed	
via ClassName.__doc__

• The class	suite consists	of	all	the	component	statements	
defining	class	members,	data	attributes	and	functions.

• If	the	first	line	after	the	class	header	is	a	string	it	is	the	
docstring of	the	class



9

CREATING	CLASSES
9

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html and	http://python-textbok.readthedocs.io/en/1.0/Classes.html#

• Every	class	should	have	a	method	with	name __init__
• This initializer	method is	automatically	called	whenever	a	new	
instance	is	created

• Initializer	is	used	to	set	up	the	attributes	required	within	the	
new	instance	by	giving	them	their	initial	state/values

• The self parameter	(can	have	different	name	but	self is	the	
convention)	is	automatically	set	to	reference	the	newly	
created	object	that	needs	to	be	initialized



10

WHAT	IS	SELF?
10

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://python-textbok.readthedocs.io/en/1.0/Classes.html#

• Self is	the	first	parameter	and	we	use	this	variable	inside	the	
method	bodies	– but	we	don’t	appear	to	pass	it,	why?

• Whenever	method	is	called	on	an	object, the	object	itself is	
automatically	passed	in	as	the	first	parameter	giving	access	
the	object’s	properties	from	inside	the	object’s	methods

• In	some	languages	this	parameter	is implicit (i.e.	it	is	not	
visible	in	the	function	signature)	and	can	be	accessed	with	a	
special	keyword

• In	Python	it	is	explicitly	exposed	(very	strongly	followed	
convention to	name	it	self)



11

CLASSES,	OBJECTS
11

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• EXAMPLE:	The	variables p and q are	assigned	references	to	
two	new Point objects



12

CREATING	CLASSES AND	INSTANCES
12

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Think	of	a	class	as	a factory for	making	objects
• The	class	itself	is	not	an	instance	of	a	point,	but	it	contains	the	
machinery	to	make	point	instances

• Every	time	the	initialiser is	called,	the	factory	is	tasked	to	
make	new	object.

• As	the	object	is	produced,	its	initialization	method	is	
executed	to	get	the	object	properly	set	up	with	its	factory	
default	settings

• The	process	of	making	new	object	and	setting	it	to	default	
settings	is	called instantiation



13

ATTRIBUTES
13

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Like	real	world	objects,	object	instances	have	both	attributes
and	methods

• Attributes	can	be	modified	in	an	instance	using	dot	notation
• Both	modules and	instances create	their	own	namespaces
• Syntax	for	accessing	attributes	(names)	is	the	same

• EXAMPLE:	in	this	case	the	attribute	selected	is	a	data	item	
from	an	instance	(state	diagram	showing	the	result	of	these	
assignments	is	below)



14

CLASSES,	OBJECTS
14

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• The	variable p refers	to	a Point object
(containing	two	attributes	referring	to	numbers)

• No	conflict	in	the	assignment	between	the	variable x (in	the	
global	namespace	here)	and	the	attribute x (in	the	namespace	
belonging	to	the	instance)	

• Purpose	of	dot	notation	is	to	fully	qualify	which	variable	we	
are	referring	to	unambiguously

• EXAMPLE:	the	first	line	outputs (x=3, y=4),
the	second	line	calculates	the	value	25



15

INITIALIZER
15

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• EXAMPLE:	to	create	a	point	at	position	(7,	6)	currently	needs	
three	lines	of	code

• Make	class	constructor	more	general	by	adding	parameters	
into	the __init__method

• The x and y parameters	here	are	optional	(default	values	of	0)



16

CLASS	vs.	TUPLE
16

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Advantage	of	using	a	class	(e.g.	Point) rather	than	a	tuple	is	
that	class	methods	are	sensible	operations	for	points,	but	
may	not	be	appropriate	for	other	tuples
(e.g.	calculate	the	distance	from	the	origin)

• Class	allows	to	group	together	sensible	operations as	well	as	
data	to	apply	the	methods	on

• Each	instance	of	the	class	has	its	own	state
• Method behaves	like	a	function	but	it	is	invoked	on	a	specific	
instance



17

OBJECT	METHODS
17

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• First	parameter	of	a	method	refers	to	the	instance	being	
manipulated	(parameter self)

• The	caller	of distance_from_origin does	not	explicitly	supply	
an	argument	to	match	the self parameter



18

INSTANCES	AS	ARGUMENTS	/	PARAMS
18

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Pass	an	object	as	an	argument	in	the	usual	way
• The	variable	only	holds	a	reference	to	an	object,	therefore	
passing object into	a	function	creates	an	alias
(both	the	caller	and	the	called	function	now	have	a	reference)

• Function	print_point takes	a	point	as	an	argument	and	
formats	the	output



19

CONVERTING	INSTANCE	INTO	STRING
19

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Best	approach	is	to	have	a	method so	that	every	instance	can	
produce	a	string	representation	of	itself

• TOOLS: str as	type	converter	turns	object	into	a	string,	
print function	automatically	uses	this	conversion



20

CONVERTING	INSTANCE	INTO	STRING
20

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Use	method __str__
• If	method __str__ is	used	instead	of to_string,	
Python	interpreter	will	use	the	defined	code	whenever	it	
needs	to	convert	a Point to	a	string	automatically



21

INSTANCES	AS	RETURN	VALUES
21

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Functions	and	methods	can	return	instances

• EXAMPLE:	assume	a	point	object	in	2D	and	aim	to	find	the	
midpoint	halfway	between	it	and	some	other	target	point
(function	midpoint)



22

INSTANCES	AS	RETURN	VALUES
22

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Implement	the	midpoint	function	as	method	instead	
• Method	is	identical	to	the	function	(just	renamed	halfway)
• As	function	calls	are	composable,	method	calls	and	object	
instantiation	are	also	composable,	leading	to	this	alternative	
that	uses	no	variables



23

OOP	PERSPECTIVE
23

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

OOP	is	about	changing	the	perspective

• Syntax	for	a	function	call:	function_name(variable)
function is	the	one	who	executes	on	the	variable

• Syntax	in	OOP:	object_name.function_name()
object is	the	one	who	executes	its	method	on	given	data	/	
attribute



24

EXAMPLE	– CLASS	VARIABLE
24

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://stackoverflow.com/questions/68645/static-class-variables-in-python



25

INTRODUCTION	INTO	DECORATORS
25

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague



26

CLASS	METHODS
26

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775

@classmethod
• In	the	same	way	class attributes	are	defined,	which	are	shared	
between	all	instances	of	a	class,	class methods	are	defined	
using	@classmethod decorator for	ordinary	method

• Class	method	still	has	its	calling	object	as	the	first	parameter,	
but	by	convention	cls instead	of	self

• If	class	method	is	called	from	an	instance,	this	parameter	will	
contain	the	instance	object,	but	if	it	is	called	from	the	class	it	
will	contain	the	class	object

• Naming	the	parameter cls serves	as	reminder	that	it	is	not	
guaranteed	to	have	any instance attributes



27

CLASS	METHODS
27

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775

What	are	class	methods	good	for?

• For	tasks	associated	with	a	class	utilizing	constants	and	other	
class	attributes	without	the	need	to	create	any	class	instances

• EXAMPLE:	when	we	write	classes	to	group	related	constants	
together	with	functions	which	act	on	them	– no	need	to	
instantiate	these	classes	at	all



28

EXAMPLE	– INSTANCE	METHODS
28

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods



29

EXAMPLE	– CLASS	METHODS
29

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods



30

STATICS	METHODS
30

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775

@staticmethod
• Static	method	does	not	have	the	calling	object	passed	into	it	
as	the	first	parameter

• Static	method	does	not	have	access	to	the	rest	of	the	class	or	
instance	

• Static	method	is	most	commonly	called	from	class	objects
(like	class	methods)



31

EXAMPLE	– STATIC	METHODS
31

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



32

PROPERTY
32

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775

@property
• Method	to	generate	a	property	of	an	object	dynamically
(e.g.	calculating	it	from	the	object’s	other	properties)

• Use	a	method	to	access	a	single	attribute	and	return	it	
• Use	a	different	method	to	update	the	value	of	the	attribute	
instead	of	accessing	it	directly

• These	methods	are	called getters and setters,	because	they	
“get”	and	“set”	the	values	of	attributes,	respectively



33

EXAMPLE	– PROPERTY
33

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



34

OBJECT	PROPERTIES
34

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



35

EXAMPLE	– OBJECT	PROPERTIES
35

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

SOURCE	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



36

EXAMPLES
36

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



37

EXAMPLES
37

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



38

EXAMPLES
38

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



39

EXAMPLES
39

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



40

EXAMPLES
40

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



41

EXAMPLES
41

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



42

EXAMPLES
42

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



43

EXAMPLES
43

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



44

EXAMPLES
44

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



45

EXAMPLES
45

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



46

INSPECTING	OBJECTS
46

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775

• Use	function	dir for	inspecting	objects:	output	list	of	the	
attributes	and	methods



47

EXAMPLES
47

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



48

EXAMPLES
48

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



49

EXAMPLES
49

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

EXAMPLES	FROM	http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER	CC	BY-SA	4.0	licence Revision 8e685e710775



50

REFERENCES
50

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

This	lecture	re-uses	selected	parts	of	the	OPEN	BOOK	PROJECT
Learning	with	Python	3	(RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available	under	GNU	Free	Documentation	License Version	1.3)

• Version	date:	October	2012
• by	Peter	Wentworth,	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	Meyers

(based	on	2nd	edition	by	Jeffrey	Elkner,	Allen	B.	Downey,	and	Chris	Meyers)	
• Source	repository	is	at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For	offline	use,	download	a	zip	file	of	the	html	or	a	pdf	version	

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This	lecture	re-uses	selected	parts	of	the	PYTHON	TEXTBOOK
Object-Oriented	Programming	in	Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released	under	CC	BY-SA	4.0	licence Revision 8e685e710775)


