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• Object-oriented	programming	languagemeans	it	provides	
features	supporting object-oriented	programming (OOP)

• OOP	main paradigm used	in	the	creation	of	new	software	to	
handle	rapidly	increasing	size	and	complexity	and	to	make	
easier	to	modify	and	update	

• In	Python,	everything	is	an	object	– everything	is	an	instance	
of	some	class

• In	procedural	programming	the	focus	is	on	writing	functions	
or procedures which	operate	on	data

• In	object-oriented	programming	the	focus	is	on	the	creation	
of objects which	contain	both	data	and	functionality	together
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• Attribute:	named	data	item	that	makes	up	an	instance
• Class:	compound	type	interpretable	as	a	template	for	the	
objects	that	are	instances	of	it	

• Class:	is	a	prototype	for	an	object that	defines	a	set	of	
attributes	that	characterize	any	object	of	the	class.	

• The	attributes (class	variables	and instance	variables)	and	
methods are	both	accessed	via	dot	notation

• Class	variable:	variable	that	is	shared	by	all	instances	of	the	
class	(class	variables	are	defined	within	a	class	but	outside	any	
of	the	class's	methods;	they	are	not	used	as	frequently	as	
instance	variables	are)
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• Data	member:	class	variable	or	instance	variable	that	holds	
data	associated	with	a	class	and	its	objects

• Initializer	method:	special	method	in	Python	(called __init__)	
that	is	invoked	automatically	to	set	a	newly	created	object’s	
attributes	to	their	initial	values

• Instance:	object	whose	type	is	of	some	class
(instance	and	object	are	used	interchangeably)

• Instantiate:	procedure	necessary	to	create	an	instance	of	a	
class	and	by	running	its	initializer
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• Method:	a	function	that	is	defined	inside	a	class	definition	and	
is	invoked	on	instances	of	that	class

• Object:	a	compound	data	type	that	is	often	used	to	model	a	
thing	or	concept	in	the	real	world

• Object:	bundles	together	the	data and	the	operations that	are	
relevant	for	that	kind	of	data

• Instance	variable:	variable	defined	inside	a	method	that	
belongs	only	to	the	current	instance	of	a	class

• Inheritance:	transfer	of	the	characteristics	of	a	class	to	other	
classes	that	are	derived	from	it
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• EXAMPLE:	create	our	own	user-defined	class:	the Point
• Consider	the	concept	of	a	mathematical	point:	in	two	
dimensions,	a	point	is	two	numbers	(coordinates)	that	are	
treated	as	a	single	object

• A	natural	way	to	represent	a	point	in	Python	is	with	two	
numeric	values	– how	to	group	these	two	values	into	a	
compound	object?

• Define	a	new class
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• Class	definitions	usually	near	the	beginning of	the	program	
(convention:	after	the import statements)

• No	need	to	put	every	class	into	its	own	module
• Syntax	rules	for	a	class	definition	are	the	same	as	for	other	
compound	statements

• Header	begins	with	the	keyword class,	followed	by	the	name
of	the	class,	and	ending	with	a	colon

• Levels	of	indentation tell	us	where	the	class	ends



8

CREATING	CLASSES
8

08/12/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

• The class statement	creates	a	new	class	definition.	
• The	class	has	a	documentation	string,	which	can	be	accessed	
via ClassName.__doc__

• The class	suite consists	of	all	the	component	statements	
defining	class	members,	data	attributes	and	functions.

• If	the	first	line	after	the	class	header	is	a	string	it	is	the	
docstring of	the	class
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• Every	class	should	have	a	method	with	name __init__
• This initializer	method is	automatically	called	whenever	a	new	
instance	is	created

• Initializer	is	used	to	set	up	the	attributes	required	within	the	
new	instance	by	giving	them	their	initial	state/values

• The self parameter	(can	have	different	name	but	self is	the	
convention)	is	automatically	set	to	reference	the	newly	
created	object	that	needs	to	be	initialized
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• Self is	the	first	parameter	and	we	use	this	variable	inside	the	
method	bodies	– but	we	don’t	appear	to	pass	it,	why?

• Whenever	method	is	called	on	an	object, the	object	itself is	
automatically	passed	in	as	the	first	parameter	giving	access	
the	object’s	properties	from	inside	the	object’s	methods

• In	some	languages	this	parameter	is implicit (i.e.	it	is	not	
visible	in	the	function	signature)	and	can	be	accessed	with	a	
special	keyword

• In	Python	it	is	explicitly	exposed	(very	strongly	followed	
convention to	name	it	self)
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• EXAMPLE:	The	variables p and q are	assigned	references	to	
two	new Point objects
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• Think	of	a	class	as	a factory for	making	objects
• The	class	itself	is	not	an	instance	of	a	point,	but	it	contains	the	
machinery	to	make	point	instances

• Every	time	the	initialiser is	called,	the	factory	is	tasked	to	
make	new	object.

• As	the	object	is	produced,	its	initialization	method	is	
executed	to	get	the	object	properly	set	up	with	its	factory	
default	settings

• The	process	of	making	new	object	and	setting	it	to	default	
settings	is	called instantiation
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• Like	real	world	objects,	object	instances	have	both	attributes
and	methods

• Attributes	can	be	modified	in	an	instance	using	dot	notation
• Both	modules and	instances create	their	own	namespaces
• Syntax	for	accessing	attributes	(names)	is	the	same

• EXAMPLE:	in	this	case	the	attribute	selected	is	a	data	item	
from	an	instance	(state	diagram	showing	the	result	of	these	
assignments	is	below)
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• The	variable p refers	to	a Point object
(containing	two	attributes	referring	to	numbers)

• No	conflict	in	the	assignment	between	the	variable x (in	the	
global	namespace	here)	and	the	attribute x (in	the	namespace	
belonging	to	the	instance)	

• Purpose	of	dot	notation	is	to	fully	qualify	which	variable	we	
are	referring	to	unambiguously

• EXAMPLE:	the	first	line	outputs (x=3, y=4),
the	second	line	calculates	the	value	25
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• EXAMPLE:	to	create	a	point	at	position	(7,	6)	currently	needs	
three	lines	of	code

• Make	class	constructor	more	general	by	adding	parameters	
into	the __init__method

• The x and y parameters	here	are	optional	(default	values	of	0)
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• Advantage	of	using	a	class	(e.g.	Point) rather	than	a	tuple	is	
that	class	methods	are	sensible	operations	for	points,	but	
may	not	be	appropriate	for	other	tuples
(e.g.	calculate	the	distance	from	the	origin)

• Class	allows	to	group	together	sensible	operations as	well	as	
data	to	apply	the	methods	on

• Each	instance	of	the	class	has	its	own	state
• Method behaves	like	a	function	but	it	is	invoked	on	a	specific	
instance
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• First	parameter	of	a	method	refers	to	the	instance	being	
manipulated	(parameter self)

• The	caller	of distance_from_origin does	not	explicitly	supply	
an	argument	to	match	the self parameter
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• Pass	an	object	as	an	argument	in	the	usual	way
• The	variable	only	holds	a	reference	to	an	object,	therefore	
passing object into	a	function	creates	an	alias
(both	the	caller	and	the	called	function	now	have	a	reference)

• Function	print_point takes	a	point	as	an	argument	and	
formats	the	output
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• Best	approach	is	to	have	a	method so	that	every	instance	can	
produce	a	string	representation	of	itself

• TOOLS: str as	type	converter	turns	object	into	a	string,	
print function	automatically	uses	this	conversion
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• Use	method __str__
• If	method __str__ is	used	instead	of to_string,	
Python	interpreter	will	use	the	defined	code	whenever	it	
needs	to	convert	a Point to	a	string	automatically
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• Functions	and	methods	can	return	instances

• EXAMPLE:	assume	a	point	object	in	2D	and	aim	to	find	the	
midpoint	halfway	between	it	and	some	other	target	point
(function	midpoint)
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• Implement	the	midpoint	function	as	method	instead	
• Method	is	identical	to	the	function	(just	renamed	halfway)
• As	function	calls	are	composable,	method	calls	and	object	
instantiation	are	also	composable,	leading	to	this	alternative	
that	uses	no	variables
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OOP	is	about	changing	the	perspective

• Syntax	for	a	function	call:	function_name(variable)
function is	the	one	who	executes	on	the	variable

• Syntax	in	OOP:	object_name.function_name()
object is	the	one	who	executes	its	method	on	given	data	/	
attribute
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@classmethod
• In	the	same	way	class attributes	are	defined,	which	are	shared	
between	all	instances	of	a	class,	class methods	are	defined	
using	@classmethod decorator for	ordinary	method

• Class	method	still	has	its	calling	object	as	the	first	parameter,	
but	by	convention	cls instead	of	self

• If	class	method	is	called	from	an	instance,	this	parameter	will	
contain	the	instance	object,	but	if	it	is	called	from	the	class	it	
will	contain	the	class	object

• Naming	the	parameter cls serves	as	reminder	that	it	is	not	
guaranteed	to	have	any instance attributes
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What	are	class	methods	good	for?

• For	tasks	associated	with	a	class	utilizing	constants	and	other	
class	attributes	without	the	need	to	create	any	class	instances

• EXAMPLE:	when	we	write	classes	to	group	related	constants	
together	with	functions	which	act	on	them	– no	need	to	
instantiate	these	classes	at	all
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@staticmethod
• Static	method	does	not	have	the	calling	object	passed	into	it	
as	the	first	parameter

• Static	method	does	not	have	access	to	the	rest	of	the	class	or	
instance	

• Static	method	is	most	commonly	called	from	class	objects
(like	class	methods)
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@property
• Method	to	generate	a	property	of	an	object	dynamically
(e.g.	calculating	it	from	the	object’s	other	properties)

• Use	a	method	to	access	a	single	attribute	and	return	it	
• Use	a	different	method	to	update	the	value	of	the	attribute	
instead	of	accessing	it	directly

• These	methods	are	called getters and setters,	because	they	
“get”	and	“set”	the	values	of	attributes,	respectively
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• Use	function	dir for	inspecting	objects:	output	list	of	the	
attributes	and	methods
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