
1

PRG	– PROGRAMMING	ESSENTIALS
1

Lecture	7	– Files,	I/O
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal	Reinštein
Czech	Technical	University	in	Prague,	

Faculty	of	Electrical	Engineering,	Dept.	of	Cybernetics,	
Center	for	Machine	Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague



2

FILES
2

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• During	program	execution,	its	data	is	stored	in random	access	
memory (RAM)

• RAM	is	fast	and	inexpensive	but	volatile
• To	preserve	data	when	the	system	is	not	powered	the	data	
has	to	be	written	to	a non-volatile storage	medium

• Data	on	non-volatile storage	media	is	stored	in	named	
locations on	the	media	called files

• By	reading and	writing files,	programs	can	save	information	
between	program	runs

• To	open	a	file,	we	specify	its	name (path)	and	indicate	
whether	we	want	to	read or	write.



3

FILES
3

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: program	writes	three	lines	of	text	into	a	file
• Opening	a	file	creates	a	file handle
• Variablemyfile refers	to	the	new	handle	object
• Program	calls	methods	on	the	handle	changing	the	actual	file	
which	is	usually	located	on	our	disk

• Line	1:	the	open function	takes	two	arguments:	
the	first	is	the	name of	the	file,	and	the	second	is	themode

• Mode "w"means	that	we	are	opening	the	file	for	writing:
• If	there	is	no	file	 on	the	disk,	it	will	be	created
• If	the	file	exists	it	will	be	replaced



4

FILES
4

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• To	store	data	into	the	file	we	invoke	thewrite method on	the	
handle	(lines	2,	3	and	4)

• Lines	2	– 4	should	usually	be	replaced	by	a	loop	that	writes	
more	lines	into	the	file,	i.e.	the	content	we	want	to	store

• Line	5:	closing the	file	handle	tells	the	system	that	writing	the	
content	is	finished	and	makes	the	disk	file	available	for	
reading	by	other	programs



5

FILES
5

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html



6

FILES
6

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE: reading	a	file	line-at-a-time using	the	mode	
argument	is "r" for	reading

• More	extensive	logic	into	the	body	of	the	loop	at	line	8



7

FILES
7

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• Line	8:	the	newline	character	that print usually	appends	to	our	
strings	is	suppressed

• The	string	already	has	its	own	newline:	the readlinemethod	
in	line	3	returns	everything	up	to and	including the	newline

• The	end-of-file	detection	logic:	when	there	are	no	more	lines	
to	be	read	from	the	file, readline returns	an	empty	string	
(no	newline	at	the	end,	hence	its	length	is	0)



8

FILES
8

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html



9

FILES
9

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE:	fetch	data	from	a	disk	file,	perform	processing	
(sorting)	and	turn	it	into	a	list	of	lines	written	back	into	the	file

• The readlinesmethod	in	line	2	reads	all	the	lines	and	returns	
a	list	of	the	strings



10

FILES
10

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE:	reading	the	whole	file	at	once
• Read	the	complete	contents	of	the	file	into	a	string,	and	then	
to	use	string-processing	skills	to	work	with	the	contents

• Not	interested	in	the	line	structure	of	the	file
• EXAMPLE:	use	the splitmethod	on	strings	which	can	break	a	
string	into	words	(e.g.	counting	the	number	of	words	in	a	file)

• NOTE:	the "r"mode	in	line	1	is	omitted	since	by	default	
Python	opens	the	file	for	reading



11

FILES
11

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html



12

FILES
12

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• Working	with	binary	files
• Binary	files	usually	hold	photographs,	videos,	zip files,	
executable programs

• Binary	files	are	not	organized	into	lines	and	cannot	be	opened	
with	a	normal	text	editor

• Reading	binary	files	gets	bytes back	rather	than	a	string



13

FILES
13

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• Mode "b" to	tell	Python	that	the	files	are	binary
• Line	5:	read takes	an	argument	telling	how	many	bytes	to	
attempt	to	read	from	the	file	(read	and	write	up	to	1024	bytes	
on	each	iteration	of	the	loop)

• When	an	empty	buffer	is	returned	from	the	attempt	to	read,	
break	out	of	the	loop	and	close	both	the	files

• The	type	of buf is bytes



14

EXAMPLE	– FILTER
14

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE:	filter	that	copies	one	file	to	another,	omitting	any	
lines	that	begin	with #

• Line	9:	the continue statement	skips	over	remaining	lines	in	
the	current	iteration	of	the	loop,	but	the	loop	will	still	iterate



15

EXAMPLE	– FILTER
15

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• If text is	the	empty	string,	the	loop	exits
• If	the	first	character	of text is	a	hash	mark,	the	flow	of	
execution	goes	to	the	top	of	the	loop,	ready	to	start	
processing	the	next	line

• Only	if	both	conditions	fail,	writing	the	line	into	the	new	file	



16

DIRECTORIES
16

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



17

DIRECTORIES
17

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• Files	on	non-volatile	storage	media	are	organized	by	a	set	of	
rules	known	as	a file	system

• File	systems	are	made	up	of	files and directories,	which	are	
containers for	both	files	and	other	directories.

• When	we	create	a	new	file	by	opening	it	and	writing,	the	new	
file	goes	in	the	current	directory

• When	we	want	to	open	a	file	somewhere	else,	we	have	to	
specify	the path to	the	file,	which	is	the	name	of	the	directory	
(or	folder)	where	the	file	is	located



18

PATHS
18

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



19

PATHS
19

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



20

PATHS
20

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• A	Windows	path	might	
be "c:/temp/words.txt" or "c:\\temp\\words.txt”

• Backslashes	are	used	to	escape	things	like	newlines	and	tabs,	
we	need	to	write	two	backslashes	in	a	literal	string	to	get	one!	
(the	length	of	these	two	strings	is	the	same)

• We	cannot	use / or \ as	part	of	a	filename
(reserved	as	a delimiter between	directory	and	filenames)

• The	file /usr/share/dict/words should	exist	on	Unix-based	
systems,	and	contains	a	list	of	words	in	alphabetical	order



21

PATHS
21

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



22

FILES
22

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



23

ENCODING
23

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



24

ENCODING
24

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



25

FILES	– „WITH“	STATEMENT
25

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



26

FILES	– „WITH“	STATEMENT
26

24/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



27

FILES	– „WITH“	STATEMENT
27

24/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



28

FILES
28

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



29

EXAMPLE	– COLLATZ	SEQUENCE
29

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



30

EXAMPLE	– COLLATZ	SEQUENCE
30

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



31

EXAMPLE	– WRITE	vs.	APPEND
31

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



32

EXAMPLE	– WRITE	vs.	APPEND
32

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



33

EXAMPLE	– READ	and	WRITE
33

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



34

EXAMPLE	– READ	and	WRITE
34

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017



35

EXAMPLE	– DATA	FROM	WEB
35

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• EXAMPLE:	copy	contents	at	some	web	URL	to	a	local	file
• The urlretrieve function	can	be	used	to	download	any	kind	of	
content	from	the	Internet	(resources	to	fetch	must	exist)

• Need	of	permissions to	write	to	the	destination	filename,	
and	the	file	will	be	created	in	the	“current	directory”	
(i.e.	the	same	folder	that	the	Python	program	is	saved	in)

• Authorization	necessary	if	behind	a	proxy	server



36

EXAMPLE	– DATA	FROM	WEB
36

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/files.html

• Rather	than	saving	the	web	resource	to	local	disk,	we	read	it	
directly	into	a	string,	and	return	it

• Opening	the	remote	url returns	a socket (handle to	end	of	the	
connection	between	the	program	and	the	remote	web	server)	

• Call	read,	write,	and	closemethods	on	the	socket	object



37

SUMMARY
37

23/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	courtesy	of	Petr	Posik BE5b33PR	2016/2017


