PRG — PROGRAMMING ESSENTIALS

Michal Reinstein

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

@é ADMIN @

* Noclasseson 17.11. 2017 due to
* Prepare for the 24.11. 2017 during labs
* Preliminary exam dates (check the faculty system):

Multiple choice test, or allowed.
The exam starts sharp at 8:00.
Use the Faculty information system to enroll (find the room!).

Ao

SEQUENCE TYPES @

e Sequences of items— they support

* membership operator
e querying for size

* indexing and slices

* |terable

: immutable ordered sequence of characters
: immutable ordered sequence of items of any data type
: mutable ordered sequence of items of any data type

il SET TYPES @

* Set types support
* membership operator
* querying for size
* jterable
* set operations (comparisons, union, intersection, subset)
: mutable unordered collection of unique items of any type
: immutable unordered collection of unique items of
any data type
 When iterated over, sets provide items in an arbitrary order
 Only objects may be added to a set:
* Immutable data types are (hash value dos not
change, compare for equality to other objects)
(int, float, str, tuple, frozenset)
 Mutable values are (usually) not hashable (list, dict, set)

SET USAGE

Creating a set of letters from a sequence of letters:

s = set ('abracadabra')
S

{Ial, Ibl’ Icl’ ldl, lrl}
Iterating over set items:

for i in s:
print (i, end="' ')

dcabr

Membership checking:

'a' in s, 'z' in s

(True, False)

SET USAGE

Adding an item to a set:

s.add('z")

Removing an item from a set:

s.discard('a"') # Nothing happens if 'a' not in s

s.remove ('b") # Raises KeyError if 'b' not in s

SET
O
PERATIONS

set('p
ro
gra
mm i
in
g')
, set('e
sse
nti
ial
Sl
)

({'a’
’ 1
gl
4 'i
ll
’ 1
ml
’ 1
nl
’ 1
OV
’ 1
p|
’ er
)
14
{'al
’ '
e|
4 'i
l‘
’ 1
l!
’ 1
nl
’ 1
Sl
, ltl
b

Union:

set('p
ro
gra
mmi
in
g')
| set('e
sse
nti
ial
S'
)

{lal
’ lel
’ 1
g'
14 'i
l'
’ lll
’ '
ml
’ '
nl
’ 1
ol
’ 1
pl
’ 1
rl
’ 1
Sl
, |t|
}

Int
ers
ecti
ion:

set('p
ro
gra
mmi
in
g')
&
set('e
sse
nti
ial
Sl
)

Di
ifference:

set('p
ro
gra
mmi
in
g')
set('e
sse
nti
ial
Sl
)

{lgl
’ 1
ml
’ \
Ol
’]
pl
’]
r'}

y
e.

set('p
ro
gra
mmi
in
g')
A
set('e
sse
nti
ial
Sl
)

il SET OPERATIONS G

Set "comparisons"

Are two sets disjoint? (l.e., is their intersection empty?)

set ('programming') .isdisjoint (set ('essentials'))

False

Is one subset of another?

set('pro') <= set('programming') # Or, set('pro').issubset (set ('programming'))
True

Is one superset of another?

set ('pro') >= set('programming') # Or, set('pro').issuperset (set('programming'))

False

@ SET OPERATIONS

Set example: unique items

Having a list of (e.g.) words, how do we get a list of unique words?

words = 'three one two one two one'.split()
print (words)

['three', 'one', 'two', 'one', 'two', 'one']
unique words = list (set (words))

print (unique words)

['three', 'two', 'one']

Note, however, that the new list does not (in general) preserve the order of words in the original list.

SET OPERATIONS

Set example: eliminate unwanted items (1)

Having a list of file names, how do we get rid of some of them (! prediction. txt, !truth.txt)?

orig filenames = 'fl f2 !prediction.txt £3 fd.ext !truth.txt £5'.split()
filenames = set (orig filenames)

print (filenames)

for fname in {'!truth.txt', 'l!prediction.txt'}:

filenames.discard (fname)
print (filenames)

{'fd4.ext', 'f£1', '£3', 'f£2', 'lprediction.txt', '!truth.txt', '£5'}
{'f4.ext', 'f1', '£3', 'f2', '!truth.txt', '£5'}
{'fd4.ext', 'f1', '£3', 'f2', '£5'}

10

SET OPERATIONS

Set example: eliminate unwanted items (2)

Having a list of file names, how do we get rid of some of them (! prediction.txt, !truth.txt)?

filenames =
print (filenames)

{'fd.ext"',

filenames =
filenames

{'£f1°",

'f2',

set (orig filenames)

'fl', lf3l' 'f2’,
filenames -
'£3', 'fd4.ext',

'"!'prediction.txt', '!truth.txt',

"f51}

{'"!'truth.txt', 'l!prediction.txt'}

"£f5'}

11

il MAPPING TYPES @

12

>>> inventory = {"apples": 430, "bananas": 312, "oranges": 525, "pears": 217}
>>> print(inventory)
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

A mapping type is an
They support
* membership operator
e querying for size
 iterable
Only (i.e. immutable) objects can be used as keys
Each key's associated value may be of

DICTIONARIES @

13
>>> eng2sp = {}

>>> eng2sp["one"”] = "uno"
>>> eng2sp["two"] = "dos"

>>> print(eng2sp)
{“two“: Ildosll, Ilonell: "unO"}

Strings, lists, and tuples — are sequence types using integers
as indices to access the values they contain within them
Dictionaries are Python’s built-in

They map () to that can be
any type ()

Other languages: associative arrays (associate key with value)

EXAMPLE: Create a dictionary to translate English words into
Spanish (the keys are strings). One way to create a dictionary
is to start with the empty dictionary and add key : value pairs.
The is denoted

DICTIONARIES @

14

The order of the pairs may not be what was expected. Python uses complex algorithms, designed for very fast
access, to determine where the key:value pairs are stored in a dictionary. For our purposes we can think of this
ordering as unpredictable.

You also might wonder why we use dictionaries at all when the same concept of mapping a key to a value could be
implemented using a list of tuples:

>>> {"apples": 430, "bananas": 312, "oranges": 525, "pears": 217}
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

>>> [('apples', 430), ('bananas', 312), ('oranges', 525), ('pears', 217)]
[('apples', 430), ('bananas', 312), ('oranges', 525), ('pears',6 217)]

The reason is dictionaries are very fast, implemented using a technique called hashing, which allows us to access a
value very quickly. By contrast, the list of tuples implementation is slow. If we wanted to find a value associated with
a key, we would have to iterate over every tuple, checking the Oth element. What if the key wasn’t even in the list?
We would have to get to the end of it to find out.

il DICTIONARIES C

>>> eng2sp = {"one": "uno", "two": "dos", "three": "tres"}

15

>>> print(eng2sp["two"])
'dos'

* To create a dictionary is to provide a list of
using the same syntax as the previous output

* Order of pairs does not matter — the values in a dictionary are
accessed with keys, not with indices,

* Key is used to look up the corresponding value:
the key "two" yields the value "dos"

* Lists, tuples, and strings have been called sequences, because
their items occur in order

* The dictionary is compound type that is

()

@ DICTIONARIES @

16

Python Console
. (9pt(1oFaL/bin/python2.7:‘/Appl‘isarti‘onrsA/‘Ptha‘rm.app/Contel » P2 Special Variables

. keys = ['a', 'b', '¢'l & _ =
values = [1, 2, 3] B __=
my_dict = dict(zip(keys, values)) -
1 ,(my_dict) r:_ ! Ial Il 1Al
'+ 1, 'c': 3, 'b': 2} = keys = <type 'list'>: ['a', 'b’, 'c']
= my_dict = {'a: 1, 'c" 3, 'b" 2}
'c' (4555205408) 3
'b' (4555203808) 2
@ __len__ = 3
'a' (4555203768) = 1

» :Svalues = <type 'list'>: [1, 2, 3]

Keys and values can be defined as separate lists
(order matters!)

Lists can be paired using

* Once paired a dictionary can be created using

DICTIONARIES

Creating a dictionary:

course = {'id': 'BES5S5B33PRG', 'name': 'Programming essentials', 'capacity': 25}

course2 = dict (id='BE5B33PRG', name='Programming essentials', capacity=25)

course3d = dict([('id', 'BE5SB33PRG'), ('name', 'Programming essentials'), ('capacity', 25)1])
coursed4 = dict(zip(('id', 'name', 'capacity'), ('BE5B33PRG', 'Programming essentials', 25)))

All the above methods create a dictionary with the same contents:

course

{'capacity': 25, 'id': 'BES5B33PRG', 'name': 'Programming essentials'}
course == course2 == course3 == courseé

True

Testing membership in a dictionary (the tested object is assumed to be a key):

'id' in course, 'BES5B33PRG' in course

(True, False)

DICTIONARIES @

18

Querying a dictionary for a value:

course['id']

'BE5B33PRG'

Getting the lists of keys, values and key-value pairs:

print (list (course.keys ()))
print (list (course.values()))
print (list (course.items()))

["'name', 'capacity', 'id']
['Programming essentials', 25, 'BE5B33PRG']

[("name', 'Programming essentials'), ('capacity', 25), ('id', 'BES5B33PRG')]

Adding new key-value pairs:
course['lecturer'] = 'Svoboda'
print (course)

{'lecturer': 'Svoboda', 'name': 'Programming essentials', 'capacity': 25, 'id': 'BES5B33PRG'}

DICTIONARIES

Replacing a value for an existing key:

course['lecturer'] = 'Posik'
print (course)

{'lecturer': 'Posik', 'name': 'Programming essentials', 'capacity': 25,

Removing an item from a dictionary:

del course['lecturer']
print (course)

{'name': 'Programming essentials'

’

'capacity': 25, 'id': 'BES5B33PRG'}

'BESB33PRG'}

19

DICTIONARIES

Iterating over keys:

for key in course:
print (key, end=' | ')

name | capacity | id |

or

for key in course.keys():
print (key, end=' | ')

name | capacity | id |

Iterating over values:

for val in course.values|():

print(val, end=' | ")

Programming essentials | 25

BE5B33PRG |

20

DICTIONARIES

Iterating over key-value pairs:

for item in course.items () :

print (item[0], '=', item[l], end=' | ')
name = Programming essentials | capacity = 25 | id = BESB33PRG |
or, in a better way:
for key, val in course.items () :
print (key, '=', val, end=' | ')
name = Programming essentials | capacity = 25 | id = BES5B33PRG |

@é DICTIONARIES @
22
method
Returns the)
if the key exists in the dictionary
Returns if key is and
IS given, or
Returns a , if key does not exist in the dictionary

and the default value is specified

DICTIONARIES

print (course['id'])

BE5B33PRG

print (course.get ('id'))

BE5B33PRG

Querying a value for a non-existent key:

course

{'capacity': 25, 'id': 'BE5B33PRG', 'name': 'Programming essentials'}

#print (course['univ'])

print (course.get ('univ'))

None

print (course.get ('univ',

CTU in Prague

Raises KeyError

'CTU in Prague'))

Ao

DICTIONARIES @

Creating a Counter

from collections import Counter

C

C
C
C

| I | B | |

Counter ()

Counter ('abracadabra')

Counter ({'red': 4, 'blue': 2})
Counter (cats=4, dogs=8)

new, empty counter

new counter from an iterable
new counter from a mapping
new counter from keyword args

HH e R H
AV VR V)

Counter is a special kind of a (dictionary)
Collection of which are stored , and
their are stored

Values are counts, i.e. any integers, including negative
Defined in

24

%@ DICTIONARIES

Accessing Counter elements

» Use indexing as for dicts.

» For non-existing keys, Counter returns 0, instead of raising KeyError.

c = Counter(['eggs', 'ham'])
print (c)

Counter ({'ham': 1, 'eggs': 1})

print(c['eggs'])
print(c['bacon'])

Counter.most common ()

c = Counter ('abracadabra')

@

Counter({'a': 5, 'b': 2, 'c¢': 1, 'd': 1, 'r': 2})
c.most common (3)

[(¢ta', 5), ('b', 2), ('r', 2)]

DICTIONARIES

Adding and subtracting counters

cl = Counter ('abracadabra')
c2 = Counter ('simsalabim')
print (cl)

print (c2)

Counter({'a': 5, 'b': 2, 'r'
Counter({'a': 2, 'm': 2, 'i'

print (cl + c2)

Counter({'a': 7,

print (cl - c2)

Counter({'a': 3,

Note, there are no elements with negative values (that could be expected for s, i, m, ...).

lr':

2,

ICI:

2, 'd':
2, 's'
2, 'r'
1, 'b':

1,

ldl:

1})

1})

1})

26

DICTIONARIES

Counter.update () and Counter.subtract ()

c = Counter ()

cl = Counter ('abrakadabra')

c2 = Counter ('avada kedavra')
c.subtract (cl) # Negative counts
print (cl)

print (c)

Counter({'a': 5, 'b': 2, 'r': 2, 'd': 1, 'k': 1})
Counter ({'k': -1, 'd': -1, 'r': -2, 'b': -2, 'a': -5})

c.update (c2)
print (c)

Counter({'v': 2, ' '+ 1, 'e': 1, '4': 1], 'k': 0, 'a': 0, 'r':

c.update (cl)
c.subtract (c2)
print (c)

Counter ({'v': 0, " ': 0, 'r': 0, 'k': 0, 'e': 0, 'd': 0, 'b':

27

DICTIONARIES @

28

As in the case of lists, because , We
need to be aware of

Whenever two variables refer to the same object, changes to
one affect the other

If we want to modify a dictionary and keep a copy of the
original,

EXAMPLE: opposites is a dictionary that contains pairs of
opposites

>>> opposites = {"up": "down", "right": "wrong", "yes": "no"}
>>> alias = opposites
>>> copy = opposites.copy() # Shallow copy

DICTIONARIES

Alias and opposites refer to the same object;
Copy refers to a fresh copy of the same dictionary.
If alias is modified, opposites is

>>> alias["right"] = "left"
>>> opposites["right"]
'left’

If copy is modified, opposites is

>>> copy["right"] = "privilege"
>>> opposites["right"]
'left’

29

Ao

DICTIONARIES @

30
>>> letter counts = {}
>>> for letter in "Mississippi":
letter counts[letter] = letter_ counts.get(letter, 0) + 1
>>> letter counts
{'M': 1, 's': 4, 'p': 2, 'i': 4}
e EXAMPLE: Function that of

a letter in a string using a frequency table of the letters in the
string (how many times each letter appears)

Compressing a text file: because different letters appear with
different frequencies, we can compress a file by using shorter
codes for common letters and longer codes for letters that
appear less frequently.

* Dictionary ideal for frequency tables

il DICTIONARIES C

>>> letter items = list(letter counts.items())
>>> letter items.sort()
>>> print(letter items)

31

[('M', 1), ('1i', 4), ('P'y 2), ('s', 4)]
ALGORITHM:
e Start with an
* For each letter in the string, find the (possibly
zero) and

* At the end the dictionary contains

* To display the frequency table in alphabetical order use
 NOTE: in the first line the type conversion function list is called
to get from items into a list (needed to use sort method)

@é NAMED TUPLE

@

from collections import namedtuple

Create a custom tuple data type

Sale = namedtuple('Sale', 'customerid date productid quantity price')

Create an instance of the new data type
sale = Sale(111, '2015-11-26', 222, 3, 2.50)

tuple can

Other languages: struct or record

Named tuple is still a , can be used everywhere where

In addition to indexing by numbers it has the ability to

* Function creates a customized tuple data type:

* Argument 1: The of the new data type
* Argument 2: String with
each item in our customized tuple

, one for

32

NAMED TUPLES

Named tuple: Example 1

from collections import namedtuple

Sale
sale

Il

namedtuple ('Sale', 'customerid date productid quantity price')
Sale (111, '2015-11-26', 222, 3, 2.50)

Il

Now, you can access the individual items by indexing
print (sale[l], sale[2], sale[3])

print (sale[1l:4])

... or by names

print (sale.date, sale.productid, sale.quantity)

2015-11-26 222 3
('2015-11-26"', 222, 3)
2015-11-26 222 3

NAMED TUPLES

Create a bill consisting of several sales

sales = [Sale(111, '2015-11-26', 222, 3, 2.50),
Sale(111, '2015-11-26', 231, 1, 7.50),
Sale(111, '2015-11-26', 12, 5, 3.00)]

Compute the total
total = 0
for sale in sales:
total += sale.quantity * sale.price
print ('Total: ${:.2f}'.format (total))

Total: $30.00

34

NAMED TUPLES

Named tuple: Example 2

You can also nest one named tuple inside another, there is nothing special about it.

from collections import namedtuple

Aircraft = namedtuple('Aircraft', 'manufacturer model seats')
Seating = namedtuple('Seating', 'min max')

aircraft = Aircraft('Airbus', 'A320-200', Seating (100, 220))
print (aircraft)
print (aircraft.seats.max)

Aircraft (manufacturer="'Airbus', model='A320-200', seats=Seating(min=100,

220

max=220))

35

NAMED TUPLES

Extracting items of named tuples for printing

print (aircraft[0], aircraft[l])
print (aircraft.manufacturer, aircraft.model)

(

(
print ('{} {}'.format (aircraft.manufacturer, aircraft.model))
print (' {0.manufacturer} {0.model}'.format (aircraft))
print (' {manufacturer} {model}'.format (**aircraft. asdict()))

Airbus A320-200
Airbus A320-200
Airbus A320-200
Airbus A320-200
Airbus A320-200

36

@ LINEAR SEARCH ALGORITHM @

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]

test (search linear(friends,
test(search linear(friends,
test (search linear(friends,
test(search linear(friends,

37
'Zoe") == 1)
"Joe") == 0)
"Paris") == 6)
"Bill") == -1)

def search linear(xs, target):
" Find and return the index of target in sequence xs """

for (i, v) in enumerate(xs):

if v == target:

return i
return -1

* EXAMPLE:

— to find the index where a

specific item occurs within in a list of items
(return the index of the item if it is found,
or return -1 if the item doesn’t occur in the list)

Ao

LINEAR SEARCH ALGORITHM @

def search linear(xs, target):
'" Find and return the index of target in sequence xs """
for (i, v) in enumerate(xs):
if v == target:
return i
return -1

Searching all items in a sequence is called
Check whether is called a
Count probes as a measure of how the algorithm is

(indication of how long the algorithm will take to execute)
Linear searching is characterized by the fact that the number
of probes needed to find some target depends directly on the
length of the list

38

Ao

LINEAR SEARCH ALGORITHM @

39

def search linear(xs, target):
" Find and return the index of target in sequence xs "
for (i, v) in enumerate(xs):
if v == target:
return i
return -1

Test every item in the list from first to last such that the result
is returned by the function as it is found ()
NEGATIVE: If searching for a target that is not present in the
list, then go all the way to the end before we can return the
negative value

Search has performance

Interested in the scalability of our algorithms

(million or ten million items?)

