
1

PRG	– PROGRAMMING	ESSENTIALS
1

Lecture	5	– Modules,	Namespaces
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal	Reinštein
Czech	Technical	University	in	Prague,	

Faculty	of	Electrical	Engineering,	Dept.	of	Cybernetics,	
Center	for	Machine	Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague



2

ADMINISTRATION
2

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating

PLAGIARISM	WARNING
https://cw.fel.cvut.cz/wiki/help/common/plagiarism_cheating



3

RECAP: MORE	ABOUT	PYTHON
3

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

• The	methods	and	variables	are	created	on	stack	memory
• The	objects	and	instances	are	created	on	heap	memory
• New	stack	frame	is	created	on	invocation	of	a

function	/	method
• Stack	frames	are	destroyed	as	soon	as	the

function	/	method	returns
• Mechanism	to	clean	up	the	dead	objects	is	Garbage	collector
• Everything	in	Python	is	object
• Python	is	dynamically	typed	language



4

RECAP: LISTS
4

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Lists	are	mutable (we	can	change	their	elements)
• Strings	are	immutable (we	cannot	change	their	elements)
• Use	slicing	principles	(indexes	in	between	characters	/	items)



5

RECAP:	SLICING
5

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• A substring of	a	string	is	obtained	by	taking	a slice
• Slice	a	list	to	refer	to	some	sublist of	the	items	in	the	list
• The	operator [n:m] returns	the	part	of	the	string	from	the	n’th
character	to	the	m’th	character,	including	the	first	but	
excluding	the	last	(indices	pointing between the	characters)

• Slice	operator [n:m] copies out	the	part	of	the	paper	between	
the n andm positions

• Result	of	[n:m] will	be	of	length	(m-n)



6

RECAP: STRINGS	vs.	LISTS
6

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Variables a and b refer	to	string	object	with	letters "banana”
• Use	is operator	or	id function	to	find	out	the	reference
• Strings	are immutable,	Python	optimizes	resources	by	making	
two	names	that	refer	to	the	same	string	value	refer	to	the	
same	object

• Not	the	case	of	lists:	a and b have	the	same	value	(content)	
but	do	not	refer	to	the	same	object

Strings

Lists



7

RECAP: LISTS	– ALIASING,	CLONING
7

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• If	we	assign	one	variable	to	another,	both	variables	refer	to	
the	same	object

• The	same	list	has	two	different	names we	say	that	it	
is aliased (changes	made	with	one	alias	affect	the	other)

• RECOMMENDATION:	avoid	aliasing	when	you	are	working	
with	mutable	objects

• If	need	to	modify	a	list	and	keep	a	copy	of	the	original	use	the	
slice	operator	(taking	any	slice	of a creates	a	new	list)



8

RECAP: LIST	PARAMETERS
8

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Passing	a	list	as	an	argument	passes	a	reference to	the	list,	
not	a	copy	or	clone	of	the	list

• So	parameter	passing	creates	an	alias



9

MODULES
9

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Amodule is	a	file	containing	Python	definitions	and	
statements	intended	for	use	in	other	Python	programs

• Modules	are	one	of	the	main	abstraction	layers	available	and	
probably	the	most	natural	one

• Abstraction	layers	allow	separating	code	into	parts	holding	
related	data	and	functionality

• The	most	natural	way	to	separate	these	two	layers	is	to	
regroup	all	interfacing	functionality	into	one	file,	and	all
low-level	operations	in	another	file

• Done	with	the import and from... import statements



10

MODULES
10

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

Where	does	Python	look	for	imported	modules?
• A	list	named path in	module sys contains	all	the	locations
(and	can	be	modified)

• The	first	item	on	the	list	is	the	directory	with	the	program
What	happens	when	Python	imports	a	module?
• Python	searches	the	module	among	already	imported	
modules	in sys.modules

• If	the	module	is	not	found	in sys.modules,	Python	searches	
locations	in sys.path, executes	the	module once	it	is	found,	
and	records	that	the	module	has	already	been	imported

• Python	creates	names	in	local	namespace for	the	imported	
module,	or	for	all	the	variables,	functions,	etc.	imported	from	
the	module



11

MODULES
11

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Modules	that	can	be	both	run and	imported
• Special	variable	called __name__ inside	each	module	it	
contains:
• the	name	of	the	module	(of	the	.py file)	when	the	module	
is	imported

• string "__main__" when	the	.py file	is	run	as	a	program	
(script)

• Variable __name__ is	defined	in	both	the	calling	namespace	
and	in	the	namespace	of	the	module



12

MODULES
12

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://docs.python-guide.org/en/latest/writing/structure/#modules

• To	gain	access	to	symbols	defined	in	a	module	(i.e.	in	a	
different	namespace)	module	has	to	be	imported	(3	ways)

• The	statements	load	a	module,	create	a	name	in	the	current	
namespace,	and	bind	the	name	to	the	loaded	module



13

MODULES	– RANDOM	NUMBERS
13

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• To	include	random	decision-making	process
• To	take	samples	from	probability	distributions
• To	play	a	game	of	chance	where	the	computer	needs	to	throw	
some	dice,	pick	a	number,	or	flip	a	coin	…

• To	shuffle	a	deck	of	playing	cards	randomly	…
• In	modelling	and	simulations:	weather	models,	
environmental	models,	Monte	Carlo	method

• For	encrypting	banking	sessions	on	the	Internet



14

MODULES	– RANDOM	NUMBERS
14

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• The randommethod	returns	a	floating	point	number	in	the	
interval	[0.0,	1.0)	— the	square	bracket	means	“closed	interval	
on	the	left”	and	the	round	parenthesis	means	“open	interval	
on	the	right” – 0.0	is	possible,	but	all	returned	numbers	will	
be	strictly	less	than	1.0.	

• It	is	usual	to scale the	results	after	calling	this	method	to	get	
them	into	an	interval	suitable	for	application.	

• EXAMPLE:	scaling	to	a	number	in	the	interval	[0.0,	5.0)	
(uniformly	distributed	numbers	— numbers	close	to	0	are	just	
as	likely	to	occur	as	numbers	close	to	0.5	or	close	to	1.0)



15

MODULES	– RANDOM	NUMBERS
15

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• The randrangemethod	generates	an	integer	between	its	
lower and	upper argument

• The	randrangemethod	same	semantics	as range	(so	the	lower	
bound	is	included,	but	the	upper	bound	is	excluded)

• All	the	values	have	an	equal	probability	of	occurring	
(i.e.	the	results	are uniformly distributed).

• Randrange also	takes	an	optional	step	argument	(like	range)

• EXAMPLE:	We	needed	a	random	odd	number	less	than	100



16

MODULES	– RANDOM	NUMBERS
16

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

This	example	shows	how	to	shuffle a	list.	
(shuffle cannot	work	directly	with	range	object	so	list type	
converter	first	is	necessary)

• Random	number	generators	are	based	on	
a deterministic algorithm	— repeatable and	predictable

• Called pseudo-random generators	(not	genuinely	random)
• Each	time	you	ask	for	another	random	number,	you’ll	get	one	
based	on	the	current	seed	attribute,	and	the	state	of	the	seed



17

MODULES	– RANDOM	NUMBERS
17

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Repeatability	for	debugging and	for	writing	unit	tests	
(programs	that	do	the	same	thing	every	time	they	are	run)

• Forcing	the	random	number	generator	to	be	initialized	with	a	
known	seed	every	time	(often	this	is	only	wanted	during	
testing	/	back-testing)

• Without	this	seed	argument,	the	system	probably	uses	
something	based	on	the	OS	time.	



18

MODULES	– RANDOM	NUMBERS
18

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• EXAMPLE:	generate	a	list	containing n random	ints between	a	
lower	and	upper	bound

• NOTE:	that	we	got	a	duplicates in	the	result
(often	this	is	wanted,	e.g.	if	we	throw	a	die	five	times,	we	
would	expect	some	duplicates)



19

MODULES	– RANDOM	NUMBERS
19

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

How	to	take	care	of	duplicates?

• If	you	wanted	5	distinct	months,	then	this	algorithm	is	wrong
• In	this	case	a	good	algorithm	is	to	generate	the	list	of	

possibilities,	shuffle it,	and	slice	off the	number	of	elements	
you	want:



20

MODULES	– RANDOM	NUMBERS
20

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Allowing	duplicates (usually	described	as	pulling	balls	out	of	a	
bag with	replacement)

• No	duplicates (usually	described	as	pulling	balls	out	of	the	
bag without	replacement)

• Algorithm	“shuffle	and	slice”	is	not	ideal	for	case	of	choosing	
few	elements	from	a	very	large	domain

(Suppose	the	need	for	five	numbers	between	1	and	10	million,	
without	duplicates.	Generating	a	list	of	ten	million	items,	
shuffling	it,	and	then	slicing	off	the	first	five	would	be	a	
performance	disaster.)



21

MODULES	– RANDOM	NUMBERS
21

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

Choose	wisely	the	algorithm	based	on	the	input	data!



22

MODULES	– TIME
22

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

How	efficient	and	reliable	is	our	code?
• One	way	to	experiment	is	to

time	how	long	various	operations	take	and	what	the	
memory	requirements	are	(related	to	algorithm	complexity:	
https://people.duke.edu/~ccc14/sta-663/AlgorithmicComplexity.html )

• The timemodule	has	a	function clock that	is	recommended
• Whenever clock is	called,	it	returns	a	floating	point	number	

representing	how	many	seconds	have	elapsed	since	your	
program	started	running	(varies	according	to	OS!)



23

MODULES	– TIME
23

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• EXAMPLE:	Generating	and	summing	up	ten	million	elements	
in	under	a	second

• Proprietary	function	runs	57%	slower	than	the	built-in one.



24

MODULES	– TIME
24

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://people.duke.edu/~ccc14/sta-663/AlgorithmicComplexity.html



25

MODULES	– MATH
25

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Themathmodule	contains	mathematical	functions	typically	
found	on	a	calculator,	including	mathematical	constants	
like pi and e

• Functions radians and degrees to	convert	angles	
• Mathematical	functions	are	pure and	do	not	have	any	state



26

MODULES	– CREATING	MODULES
26

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Create	own	modules – save	script	as	a	file	with .py extension
• EXAMPLE:	function	remove_at in	a	script	is	saved	as	a	file	
named seqtools.py

• The	module	must	be	first	imported	before	use
(.py	is	the	file	extension	and	is	not	included	in	the import	
statement)

• RECOMMENDATION:	break	up	very	large	programs	into	
manageable	sized	parts	and	keep	related	parts	together



27

MODULES	– NAMESPACES
27

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Namespace	is	a	mapping from	names	to	objects
• Namespace is	a	collection	of	identifiers	that	belong	to	a	
module,	function,	or	a	class

• Namespace	is	set	of	symbols	used	to	organize	objects	of	
various	kinds	so	that	we	can	refer	to	them	by	name

• Namespaces	permit	programmers	to	work	on	the	same	
project	without	having	naming	collisions	(allow	name	reuse)

• Often	hierarchically structured
• Each	name	must	be	unique in	its	namespace
• Namespace	is	very	general	concept	not	limited	to	Python
• Each	module	has	its	own	namespace – we	can	use	the	same	
identifier	name	in	multiple	modules	without	causing	an	
identification	problem



28

MODULES	– NAMESPACES
28

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

How	are	namespaces	defined	in	Python?
• Packages	(collections	of	related	modules)
• Modules	(.py	files	containing	definitions	of	functions,	classes,	
variables,	etc.)

• Classes,	Functions	…
What	is	the	difference	between	programs	and	modules?
• Both	are	stored	in	.py	files.
• Programs (scripts)	are	designed	to	be	run	(executed)
• Modules (libraries)	are	designed	to	be	imported	and	used	by	
other	programs	and	other	modules

• Special	case:	.py	file	is	designed	to	be	both	a	program	and	a	
module	(it	can	be	executed	as	well	as	imported	to	provide	
functionality	for	other	modules)



29

MODULES	– NAMESPACES
29

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html



30

MODULES	– NAMESPACES
30

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Functions	also	have	own	namespaces
• Functions	can	read	(read-only)	variable	in	the	outer	scope
• EXAMPLE:	the	three n‘s	above	do	not	collide	since	they	are	
each	in	a	different	namespace	— three	names	for	three	
different	variables



31

MODULES,	NAMESPACES,	FILES
31

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Python	has	a	convenient	and	simplifying	one-to-one	mapping:	
one	module	per	file – giving	rise	to	one	namespace

• Python	takes	the	module	name	from	the	file	name,	and	this	
becomes	the	name	of	the	namespace

• EXAMPLE:	math.py is	a	filename,	the	module	is	calledmath,	
and	its	namespace	ismath (in	Python	the	concepts	are	more	
or	less	interchangeable)

• In	other	languages	(e.g.	C#)	one	module	can	span	multiple	
files,	or	one	file	to	have	multiple	namespaces,	or	many	files	to	
all	share	the	same	namespace



32

MODULES,	NAMESPACES,	FILES
32

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• RECOMMENDATION:	keep	the	concepts	distinct	in	your	mind
• Files	and	directories	organize where code	and	data	are	stored	
• Namespaces	and	modules	are	a	programming	concepts:	help	
us	organize	how	we	want	to	group	related	functions	and	
attributes.	

• Namespaces	are	not	about	“where”	to	store	things,	and	
should	not	have	to	coincide	with	the	file	structures

• If	the	file math.py is	renamed,	its	module	name	needs	to	be	
changed, import statements	need	to	be	changed,	and	the	
code	that	refers	to	functions	or	attributes	inside	that	
namespace	also	needs	to	be	changed	accordingly



33

MODULES	– SCOPE
33

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• A	scope is	a	textual	region	of	a	Python	program	where	a	
namespace	is	directly	accessible

What	types	of	scopes	can	be	defined?
• Local	scope refers	to	identifiers	declared	within	a	function	
(these	identifiers	are	kept	in	the	namespace	that	belongs	to	
the	function,	and	each	function	has	its	own	namespace)

• Global	scope refers	to	all	the	identifiers	declared	within	the	
current	module,	or	file

• Built-in	scope refers	to	all	the	identifiers	built	into	Python
(those	like range and min that	can	be	used	without	having	to	
import	anything)



34

MODULES	– SCOPE
34

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

What	are	the	scope	precedence	rules?
• The	same	name	can	occur	in	more	than	one	of	these	scopes,	
but	the	innermost,	or	local	scope,	will	always	take	precedence	
over	the	global	scope,	and	the	global	scope	always	gets	used	
in	preference	to	the	built-in	scope

• Names	can	be	“hidden”	from	use	if	own	variables	or	functions	
reuse	those	names

• EXAMPLE:	variables n andm are	created just	for	the	duration	
of	the	execution	of	f since	they	are	created	in	the	local	
namespace	of	function f	(precedence	rules	apply)



35

MODULES	– THE	DOT	OPERATOR
35

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/modules.html

• Variables	defined	inside	a	module	are	called attributes of	the	
module

• Attributes	are	accessed	using	the dot operator (.)
• When	a	dotted	name	is	used	it	is	often	referred	to	it	as	a fully	
qualified	name



36

MOTIVATION	– DATA	SCIENCE
36

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.kaggle.com/surveys/2017



37

MOTIVATION	– DATA	SCIENCE
37

02/11/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.kaggle.com/surveys/2017


