
Iterations and loops in Python

Petr Pošík

Department of Cybernetics, FEE CTU in Prague

EECS, BE5B33PRG: Programming Essentials, 2015

Prerequisities:

strings, tuples, lists

functions

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without making errors is

something that computers do well and people do poorly.

Repeated execution of a set of statements is called iteration. Because iteration is so common, Python provides several

language features to make it easier.

Loop types

Many computer languages have at least 2 types of loops:

for-loops suitable when a piece of code shall be ran a number of times with a known number of repetitions, and

while-loops when the number of iterations is not known in advance.

For-loops

The general form of a for statement is as follows:

for <variable> in <sequence>:

<block of code>

Execution:

The <variable> following for is bound to the first value in the <sequence>, and the <code block> is executed.

The <variable> is then assigned the second value in the <sequence>, and the <code block> is executed

again.

...

The process continues until the sequence is exhausted, or a break statement is executed within the code block.

For or For-each?

A good way of thinking about the for-loop is to actually read it as for each like:

for each item in a set (or in a sequence, or in a collection):

 do something with the item

1 z 11

Iterating over characters of a string

The for-loop can be easilly used to iterate over characters of a string.

Write a program that computes the sum of all digits in a given string:

In [1]: string = '123456789'

As a piece of code:

In [2]: sum = 0
for char in string:

sum += int(char)
print(sum)

45

As a function:

In [3]: # Compute the sum of the numbers in the string

def sum_num(s):
"""Sum the numerals in a string"""

sum = 0
for ch in string:

sum = sum + int(ch)
return sum

print(sum_num(string))

45

Iterating over tuples and lists

Actually the same as above:

In [4]: for i in [1, 2, 3]:
print(2*i, end=', ')

2, 4, 6,

In [5]: for word in ['Hello!', 'Ciao!', 'Hi!']:
print(word.upper(), end=', ')

HELLO!, CIAO!, HI!,

The range function

To reiterate, the range function can be used to generate a sequence of numbers:

In [6]: for i in range(1,4):
print(2*i, end=", ")

2, 4, 6,

The range function is a generator, i.e. it does not produce the whole sequence when called; rather, it generates the next

number of the sequence when asked. To collect all the numbers of the sequence, we need to enclose the call to range in

a list.

2 z 11

In [7]: print(list(range(10)))
start, end, step = 13, 2, -3
print(list(range(start, end, step)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[13, 10, 7, 4]

Nested for-loops

When a for-loop is inside the code block of another for-loop, we call them nested. Two nested loops can be used e.g. to

generate all pairs of values from two sequences:

In [8]: # Print out part of the multiplication table

Your code here!

In [9]: for i in range(1,4):
for j in range(1,6):

print(i*j, end=", ")
print()

1, 2, 3, 4, 5,
2, 4, 6, 8, 10,
3, 6, 9, 12, 15,

The enumerate function

Sometimes we need to go not only through the items of a sequence, but also need their indices. Let's have a list of work

days like this:

In [10]: workdays = 'Monday Tuesday Wednesday Thursday Friday'.split()
print(workdays)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Suppose we want to print out the work days and their number. The classic way to do this would be:

In [11]: for i in range(len(workdays)):
print('The day nr.', i, 'is', workdays[i])

The day nr. 0 is Monday
The day nr. 1 is Tuesday
The day nr. 2 is Wednesday
The day nr. 3 is Thursday
The day nr. 4 is Friday

Python has a function (generator) enumerate. It produces pairs of item index and the index itself:

In [12]: list(enumerate(workdays))

Out[12]: [(0, 'Monday'),
 (1, 'Tuesday'),
 (2, 'Wednesday'),
 (3, 'Thursday'),
 (4, 'Friday')]

We can use it in the for-loop as follows.

3 z 11

In [13]: for i, day_name in enumerate(workdays):
print('The day nr.', i, 'is', day_name)

The day nr. 0 is Monday
The day nr. 1 is Tuesday
The day nr. 2 is Wednesday
The day nr. 3 is Thursday
The day nr. 4 is Friday

Note that after the for command we have a pair of variables instead of the usual single variable. (This can be even

generalized and we can easily iterate over n-tuples.) We do not have to measure the length of the list, we do not have to

index into the list. This approach is more Pythonic than the previous one.

Iterating over 2 sequences at once

How to compute scalar product of 2 vectors?

In [14]: def scalar_product(v1, v2):
Your code here

pass

In [15]: vec1 = [1,2,3,4]
vec2 = [2,2,1,1]
print(scalar_product(vec1, vec2))

None

In [16]: def scalar_product(v1, v2):
sp = 0
for i in range(len(v1)):

sp += v1[i] * v2[i]
return sp

The zip function

Function zip() takes iterables (sequences) and creates a single sequence consisting of -tuples formed by the first,

second, ... items of the sequences.

In [17]: s1 = ['a','b','c','d']
s2 = [1,2,3,4]
list(zip(s1, s2))

Out[17]: [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

Scalar product with the help of zip function:

In [18]: def scalar_product_zip(v1, v2):
sp = 0
for x, y in zip(v1, v2):

sp += x*y
return sp

print(scalar_product_zip(vec1, vec2))

13

n n

4 z 11

Iterating over nested lists

Suppose you have a list of lists (or similar nested data structure), where the inner lists may be of different lengths. You

want to go over all items in the nested lists.

In [19]: elements = [['Li', 'Na', 'K'], ['F', 'Cl', 'Br', 'I']]
for element_group in elements:

print(element_group)

['Li', 'Na', 'K']
['F', 'Cl', 'Br', 'I']

In [20]: for element_group in elements:
for element in element_group:

print(element, end=' ')

Li Na K F Cl Br I

The break and continue statements

The break and continue statements change the flow of control in for- and while-loops.

The break statement

When the break command is issued inside a loop, it ends the innermost loop prematurely, passing control to the code

right after the loop.

Often it may be convenient to construct an infinite while-loop by starting it with while True:, and ending the cycle by

calling break when some condition is satisfied inside the loop.

The continue statement

When the continue command is issued inside a loop, the current iteration is interrupted by skipping the rest of the loop

code block, and transfering control to the begining of the next iteration, i.e.

in case of for-loop, the control variable is bound to the next item of the sequence,

in case of while-loop, the test is re-evaluated, and the next iteration is started.

Very often, it is convenient to use continue to filter out the iterations for which the loop should not be executed.

Examples: break and continue

Using continue to filter out iterations for numbers divisible by 2 or 3:

In [21]: for i in range(15):
if i % 2 == 0 or i % 3 == 0:

continue

print(i, end=',')

1,5,7,11,13,

Using continue to select the uppercase letters only:

5 z 11

In [22]: thing = "Something Posing As Meat"
for char in thing:

if not char.isupper(): continue

print(char, end='')

SPAM

Using break to find the first occurance of a char in a string:

In [23]: string = 'Bananarama'
char_to_find = 'r'
pos = None

for i, c in enumerate(string):
if c == char_to_find:

pos = i
break

print(pos)

6

Using break statement to exhaustively search for a cube root of a non-negative integer:

In [24]: def cube_root(number):
"""Exhaustively search for the integer cube root of non-negative integer."""

for guess in range(number+1):
if guess**3 >= number: break

if guess**3 == number:
return guess

else:
return None

In [25]: cube_root(27)

Out[25]: 3

In [26]: print(cube_root(28))

None

The while statement

While loop represents a generic iteration mechanism.

while <Boolean expression>:

<block of code>

Execution:

Perform a test (evaluate the <Boolean expression>).

If the test evaluates to True, executes the loop body (<block of code>) once, and return back to reevaluate the

test.

Repeat this process until the test evaluates to False; then pass the control to the code following the while

statement.

Example: Square of an integer

Code which computes a square of an integer n by n-times adding the value of n:

6 z 11

In [27]: def square_int(n):
"""Return the square of int n by n times adding n."""

ans = 0
iters_left = n
while iters_left != 0:

ans = ans + n
iters_left = iters_left - 1

return ans

In [28]: n = 10
print(n, '*', n, '=', square_int(n))

10 * 10 = 100

Let's redefine the function by allowing it to print some info during the iterations.

In [29]: def square_int(n, info=False):
"""Return the square of int n by n times adding n."""

ans = 0
iters_left = n
if info:

print('Iterations left:', iters_left, '| Current value of ans:', ans)
while iters_left != 0:

ans = ans + n
iters_left = iters_left - 1
if info:

print('Iterations left:', iters_left, '| Current value of ans:', ans)
return ans

In [30]: n = 6
print(n, '*', n, '=', square_int(n, info=True))

Iterations left: 6 | Current value of ans: 0
Iterations left: 5 | Current value of ans: 6
Iterations left: 4 | Current value of ans: 12
Iterations left: 3 | Current value of ans: 18
Iterations left: 2 | Current value of ans: 24
Iterations left: 1 | Current value of ans: 30
Iterations left: 0 | Current value of ans: 36
6 * 6 = 36

Example: Growth of a bacterial colony

We can calculate the growth of a bacterial colony using simple exponential growth model:

where is a population size at time , and is the growth rate.

Let's see how long it takes the bacteria to double their numbers for :

In [31]: time = 0
ini_popsize = 1000 # 1000 bacteria in the beginning

growth_rate = 0.21 # 21 % growth per minute

In [32]: # Your code here

P(t + 1) = P(t) + r ⋅ P(t) = (1 + r)P(t),

P(t) t r

r = 0.21

7 z 11

In [33]: popsize = ini_popsize
while popsize < 2 * ini_popsize:

popsize = popsize + growth_rate * popsize
time += 1
print('After', time, 'minutes, the population size is', round(popsize))

After 1 minutes, the population size is 1210
After 2 minutes, the population size is 1464
After 3 minutes, the population size is 1772
After 4 minutes, the population size is 2144

Examples

Square root of any positive number

Implement an algorithm that can compute the square root of any positive number. How can we do that?

Options:

by exhaustive enumeration of discretized space,

by bisection search, and

by the Newton-Raphson method.

Discretization + exhaustive search

Do you know how to do that? Do you know everything you need to know?

Needs better specs. is not rational number, there is no way to represent the result precisely. So the problem cannot be

solved.

We should find a reasonably precise approximation to the square root, i.e. we should find a number which is close

enough - its square is in a distance at most epsilon from the given square.

The following code approximates square root by exhaustive enumeration.

In [34]: def sqrt_exhaustive(x, epsilon=0.01):
Your code here

pass

In [35]: def sqrt_exhaustive(x, epsilon=0.01):
"""Compute square root of positive number by exhaustive enumeration."""

step = epsilon**2 # Or any other value, like 0.1, 0.0001, etc.

n_guesses = 0
guess = 0.0
while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += step
n_guesses += 1

if abs(guess**2 - x) >= epsilon:
return None, n_guesses

return guess, n_guesses

In [36]: sqrt_exhaustive(0.25)

Out[36]: (0.48989999999996237, 4899)

2‾√

8 z 11

The algorithm will make about sqrt(x) / step steps.

What if we try a bit larger number?

In [37]: sqrt_exhaustive(123456)

Out[37]: (None, 3513631)

Why didn't we find a solution? There surely is a floating point number that approximates the square root of 123456 to

within 0.01. The program did not find it because the step was too large and it jumped over the solution. Try to make step

equal to epsilon**3. It will eventually find the answer, but you might not have the patience to wait for it.

Bisection

Suppose we know that a good approximation to the square root of x lies somewhere between 0 (low) and n (high). We

exploit the fact that the numbers are ordered. We can start by guessing that the approximation lies in the middle between

low and high. If the guess is not correct, it can be either too low, so the solution must lie in the right half, or it is too high,

then the solution must be in the left half. And we can apply the same method again in a smaller interval.

In [38]: def sqrt_bisection(x, epsilon=0.01, info=False):
"""Compute square root of positive number by bisection."""

Your code here

pass

In [39]: def sqrt_bisection(x, epsilon=0.01, info=False):
"""Compute square root of positive number by bisection."""

n_guesses = 0
low = 0.0
high = max(1.0, x)
guess = (high + low) / 2
while abs(guess**2 - x) >= epsilon:

if info:
print('low =', low, ' guess =', guess, ' high =', high)

n_guesses += 1
if guess**2 < x:

low = guess
else:

high = guess
guess = (high + low) / 2

return guess, n_guesses

In [40]: sqrt_bisection(0.0025)

Out[40]: (0.0625, 3)

In [41]: sqrt_bisection(25, info=True)

low = 0.0 guess = 12.5 high = 25
low = 0.0 guess = 6.25 high = 12.5
low = 0.0 guess = 3.125 high = 6.25
low = 3.125 guess = 4.6875 high = 6.25
low = 4.6875 guess = 5.46875 high = 6.25
low = 4.6875 guess = 5.078125 high = 5.46875
low = 4.6875 guess = 4.8828125 high = 5.078125
low = 4.8828125 guess = 4.98046875 high = 5.078125
low = 4.98046875 guess = 5.029296875 high = 5.078125
low = 4.98046875 guess = 5.0048828125 high = 5.029296875
low = 4.98046875 guess = 4.99267578125 high = 5.0048828125
low = 4.99267578125 guess = 4.998779296875 high = 5.0048828125
low = 4.998779296875 guess = 5.0018310546875 high = 5.0048828125

Out[41]: (5.00030517578125, 13)

9 z 11

In [42]: sqrt_bisection(123456)

Out[42]: (351.36305049061775, 30)

Notice several things:

It found a different approximation than the previous function. Both solutions meet the problem specifications.

It needed only 13 steps to find the answer to . When you try to find , only 45 iterations are needed.

The search space is cut in half each iteration. When doing enumeration (previous case), we reduce the search

space by a small amount only each iteration.

There is nothing special about using this algorithm to find the square roots. With a small modifications you can

use it to compute cube roots. Generally, you can find a root of any function, once you find a low and high limit

bracketing the root.

Newton-Raphson

The Newton-Raphson algorithm is the most often used approximation algorithm. It can find real roots of many continuous

functions, but here we concentrate on polynomials. The problem of finding an approximation for the square root of 24

can be formulated as finding a such that . Square root of a general number is approximated by

finding root of .

Newton proved a theorem that implies that if a value, call it as guess, is an approximation to a root of , the

where is the first derivative of , is a better approximation.

For any constant and any coefficient , the first derivative of is . Thus, to improve our guess of square

root of , we can use

In [43]: def sqrt_NR(x, epsilon=0.01, info=False):
Your code here

pass

In [44]: def sqrt_NR(x, epsilon=0.01, info=False):
"""Compute square root of a positive number using Newton-Raphson."""

guess = x/2
n_guesses = 1
if info:

print('guess =', guess)
while abs(guess**2 - x) >= epsilon:

guess = guess - (guess**2 - x) / (2 * guess)
n_guesses += 1
if info:

print('guess =', guess)
return guess, n_guesses

In [45]: sqrt_NR(25, info=True)

guess = 12.5
guess = 7.25
guess = 5.349137931034482
guess = 5.011394106532552
guess = 5.000012953048684

Out[45]: (5.000012953048684, 5)

25‾‾‾√ 123456‾ ‾‾‾‾‾‾√

g

g f (g) = − 24 = 0g2 x

f (g) = − x = 0g2

g f (g)

g − ,
f (g)

(g)f ′

f ′ f

b a a + bx2 2ax g

x

← g − = g − = .gnew

f (g)

(g)f ′

− xg2

2g

g + x
g

2

10 z 11

In [46]: sqrt_NR(123456)

Out[46]: (351.3630601485824, 12)

Note that now we needed only 5 guesses to find (compared to 13 guesses using bisection), and only 12 guesses to

find (compared to 45 using bisection). Still a considerable improvement.

Notebook config

Some setup follows. Ignore it.

In [47]: from notebook.services.config import ConfigManager
cm = ConfigManager()
cm.update('livereveal', {

'theme': 'Simple',
'transition': 'slide',
'start_slideshow_at': 'selected',
'width': 1268,
'height': 768,
'minScale': 1.0

})

Out[47]: {'height': 768,
 'minScale': 1.0,
 'start_slideshow_at': 'selected',
 'theme': 'Simple',
 'transition': 'slide',
 'width': 1268}

In [1]: %%HTML
<style>
.reveal #notebook-container { width: 90% !important; }
.CodeMirror { max-width: 100% !important; }
pre, code, .CodeMirror-code, .reveal pre, .reveal code {
 font-family: "Consolas", "Source Code Pro", "Courier New", Courier, monospace;
}
pre, code, .CodeMirror-code {
 font-size: inherit !important;
}
.reveal .code_cell {
 font-size: 130% !important;
 line-height: 130% !important;
}
</style>

25‾‾‾√
123456‾ ‾‾‾‾‾‾√

11 z 11

