
Strings, Tuples, Lists
compound data types

traversing them
Tomas Svoboda

http://cmp.felk.cvut.cz/~svoboda
Programming Essentials, EECS, CTU in Prague

2016-10-27

http://cmp.felk.cvut.cz/~svoboda
http://eecs.fel.cvut.cz

compound data

• a string consists of characters

• access as a whole (one variable)

• access individual elements

2

accessing the whole

3

 1 greetings = "Hello students"
 2 new_greetings = greetings.swapcase()
 3 print(greetings, new_greetings)

1. a new string variable
2. a string method creates a new string
3. just a print to standard output

accessing elements

4

 1 greetings = "Hello students!”
 2 first_char = greetings[0]

• how to get the last character?
• how to get the first word?

lenght of a string

5

 1 greetings = "Hello students!"
 2 number_of_characters = len(greetings)

>>> greetings[number_of_characters]

string traversal - using index

6

 1 greetings = "Hello students!"
 2 i = 0
 3 while i<len(greetings):
 4 print(greetings[i])
 5 i += 1

string traversal - for loop

7

 1 greetings = "Hello students!"
 2 for c in greetings:
 3 print(c)

for with indexes

8

 1 greetings = "Hello students!"
 2 for idx,c in enumerate(greetings):
 3 print(idx,c)

slices

9

 1 greetings = "Hello students!"
 2 substr1 = greetings[0:5]
 3 substr2 = greetings[6:]
 4 print(substr1)
 5 print(substr2)

comparisons

• ==

• >, <

• …

10

strings are immutable

11

 1 greetings = "Hello students!"
 2 greetings[-1] = "?"
 3 print(greetings)

in and not in operators

12

 1 greetings = "Hello students!"
 2 if "!" in greetings:
 3 print("do not shout!")

how to remove special characters?

13

 1 special_chars = " !?"
 2 greetings = "?Hello students!"
 3 new_greetings = ""
 4 for c in greetings:
 5 if c not in special_chars:
 6 new_greetings += c
 7
 8 print(greetings)
 9 print(new_greetings)

Tuples

14

Tuples (value1, value2, ..)

• indexes

• slices

• immutable

• parentheses not strictly required, but think about
readability

15

Tuple assignment

• packing

• unpacking

16

Lists

17

[item0, item1, …]

• similar to strings, tuples, but

• lists are mutable - we can change individual items

18

Objects, references,
aliasing

19

immutable objects

20

 1 a = "hello"
 2 b = "hello"
 3 print(a == b)
 4 print(a is b)

b

a
“hello”

mutable objects

21

 1 a = ["h","e","l","l","o"]
 2 b = ["h","e","l","l","o"]
 3 print(a == b)
 4 print(a is b)

[“h”,”e”,”l”,”l”,o”]

[“h”,”e”,”l”,”l”,o”]

a

b

aliasing

22

 1 a = ["h","e","l","l","o"]
 2 b = a
 3 print(a == b)
 4 print(a is b)

[“h”,”e”,”l”,”l”,o”]a

b

cloning

23

 1 a = ["h","e","l","l","o"]
 2 b = a[:]
 3 print(a == b)
 4 print(a is b)

List as an argument

• def scale_values(input_list):

• only a reference (pointer to the data) is passed not
a clone/copy

24

pure functions and modifiers
• it is about semantics, not syntax

• pure functions communicates with the caller only through
parameters (think about math functions)

• do not alter the input parameters

• create/compute a new data/variable and return reference to it

• function-modifiers

• modify the input parameters/arguments

• or have other side effects (printing, sending emails …)

25

functions that produce lists
• def fcn(par):

• initialize result as empty list

• loop

• create a new element

• add to the result

• return result

26

list

• list(iterable)

• creates a list from any iterable (string, list, generator
…)

27

range

• range(0,100)

• does not compute all values instantly

• returns next when needed

• list(range(0,100))

• useful in for loops

28

nested lists

• element of a list can be anything …

• also other list

• think about matrices

29

summary

• compound types (elements, the whole unit)

• immutable/mutable

• reference, clone (==, is)

• pure functions vs. modifiers

30

