
1

PRG	– PROGRAMMING	ESSENTIALS
1

Lecture	4	– Compound	data	types,	Traversals
https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start

Michal	Reinštein
Czech	Technical	University	in	Prague,	

Faculty	of	Electrical	Engineering,	Dept.	of	Cybernetics,	
Center	for	Machine	Perception
http://cmp.felk.cvut.cz/~reinsmic/

reinstein.michal@fel.cvut.cz

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

2

RECAP: MEMORY
2

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

3

MORE	ABOUT	PYTHON
3

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

4

MORE	ABOUT	PYTHON
4

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

• The	methods	and	variables	are	created	on	stack	memory
• The	objects	and	instances	are	created	on	heap	memory
• New	stack	frame	is	created	on	invocation	of	a

function	/	method
• Stack	frames	are	destroyed	as	soon	as	the

function	/	method	returns
• Mechanism	to	clean	up	the	dead	objects	is	Garbage	collector
• Everything	in	Python	is	object
• Python	is	dynamically	typed	language

5

TRAVERSAL	– THE	FOR	LOOP
5

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Automate	repetitive	tasks	without	errors
• Repeated	execution	of	a	set	of	statements	is	called iteration
• Already	explored	for,	now	explore	while
• Running	through	all	items	in	a	list	is traversing / traversal

6

TRAVERSAL	– THE	WHILE	LOOP
6

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while statement	has	same	meaning	as	in	English
• Evaluate	the	condition	(at	line	5)	either False or True.
• If	the	value	is False,	exit	the while statement	and	continue	
execution	at	the	next	statement	(line	8	in	this	case)

• If	the	value	is True,	execute	each	of	the	statements	in	the	
body	(lines	6	and	7),	then	go	back	to	the while statement

7

TRAVERSAL	– THE	WHILE	LOOP
7

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• The while loop	is	more	work	than	the	equivalent for loop
• Need	to	manage	the	loop	variable:	give	it	an	initial value,	test	
for	completion,	update	it	in	the	body	to	enable	termination

• Note: range generates	a	list	up	to	but	excluding	the	last	value

8

TRAVERSAL	– WHILE	vs.	FOR
8

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Use	a for loop	if	you	know	how	many	times	the	loop will	
execute	(definite	iteration—we	know	ahead	some	definite	
bounds	for	what	is	needed)

• Use	a for to	loop	over	iterables (to	be	explored	in	later	
classes) usually	in	combination	with	in

• Use	while loop	if	you	are	required	to	repeat	computation	until	
given	condition	is	met,	and	you	cannot	calculate	in	advance	
when	this	will	happen	(indefinite	iteration—we	do	not	know	
how	many	iterations	will	be	needed)

9

TRAVERSAL	– BREAK	vs.	CONTINUE
9

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

Source	http://www.tutorialspoint.com/python/python_loop_control.htm

• The break statement	in	Python	terminates	the	current	loop	
and	resumes	execution	at	the	next	statement

• The continue statement	in	Python	returns	the	control	to	the	
beginning	of	the	current	loop

• The continue statement	rejects	all	the	remaining	statements	
in	the	current	iteration	of	the	loop	…

10

EXAMPLE
10

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Guessing	game
• This	program	makes	use	of	the	mathematical	law	
of trichotomy (given	real	numbers	a	and	b,	exactly	one	of	
these	three	must	be	true:	a	>	b,	a	<	b,	or	a	==	b)

11

COMPOUND	DATA	TYPES
11

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• So	far	built-in	types	like int, float, bool
• Compound	data	types:	strings,	lists,	dictionaries,	and	
tuples are	different	from	the	others	because	they	are	made	
up	of	smaller	pieces	
(characters	in	case	of	a	string,	items	in	case	of	a	list)

• Types	comprising	smaller	pieces	are compound	data	types

12

PAIRED	DATA
12

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Example	of	paired	data:	lists	of	names	and	lists	of	numbers
• Advanced	way	of	representing	data:	making	a	pair	of	things	is	
as	simple	as	putting	them	into	parentheses (i.e.	tuples)

13

NESTED	DATA
13

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/iteration.html

• Data	structure — a	mechanism	for	grouping and	organizing
data	to	make	it	easier	to	use

14

TUPLES
14

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/tuples.html

• The	pair	data	example	is	an	example	of	a tuple
• Tuple	groups	any	number	of	items	into	a	compound	value
• Tuple	is	a	comma-separated	sequence	of	values
• Other	languages	often	call	it records (some	related	
information	that	belongs	together)

• Important:	strings	and	tuples	are	immutable (once	Python	
creates	a	tuple	in	memory,	it	cannot	be	changed)

• Elements	of	a	tuple	cannot	be	modified,	new	tuple	holding	
different	information should	always	be	made	instead

15

TUPLES
15

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/tuples.html

• Powerful	tuple	assignment	(remember	variable	swapping)
• Equivalent	of	multiple	assignment	statements
• Requirement:	the	number	of	variables	on	the	left	must	match	
the	number	of	elements	in	the	tuple

• Tuple	assignment	is	called	tuple	packing /	unpacking

16

TUPLES
16

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/tuples.html

• Use	of	tuples	in	functions	as	return	value
• Function	can	always	only	return	a	single	value,	but	by	making	
that	value	a	tuple,	as	many	values	can	be	packed	together as	
is	needed	(e.g.	find	the	mean	and	the	standard	deviation)

• Tuple	items	can	themselves	be	other	tuples	(nested	tuples)
• Heterogeneous	data	structure:	can	be	composed	of	elements	
of	different	types (tuples,	strings,	lists)

17

STRINGS
17

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• Example:	upper is	a	method	that	
can	be	invoked	on	any	string	
object	to	create	a	new	string,	
where	all	the	characters	are	in	
uppercase

• lower, capitalize, swapcase …
• Use	documentation	&	help!

18

INDEXING
18

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• Python	uses	square	brackets	to	enclose	the	index	– indexing	
operator []

• The	expression	in	brackets	is	called	an index
• Example:	The	expression fruit[1] selects	character	number	1	
from fruit,	and	creates	a	new	string	containing	just	this	one	
character

• Computer	scientists	always	start	counting	from	zero!
• An	index	specifies	a	member	of	an	ordered	collection
(in	this	case	the	collection	of	characters	in	the	string)

• Index indicates which	one	you	want,	hence	the	name
• Index	can	be	any	integer	expression	(not	only	value)

19

INDEXING
19

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• Use	enumerate to	visualize	indices
• Note	that	indexing	strings	returns	a string:	Python	has	no	
special	type	for	a	single	character	(string	of	length	=	1)

• Use	index to	extract	elements	from	a	list

20

INDEXING
20

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• Use	len to	extract	the	number	of	elements	(indexing	from	0!)
• Negative	indices	count	backward	from	the	end	of	the	string
• The	expression fruit[-1] yields	the	last	letter
• Traversals:	while vs.	for comparison	again!

21

SLICING
21

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• A substring of	a	string	is	obtained	by	taking	a slice
• Slice	a	list	to	refer	to	some	sublist of	the	items	in	the	list
• The	operator [n:m] returns	the	part	of	the	string	from	the	n’th
character	to	the	m’th character,	including	the	first	but	
excluding	the	last	(indices	pointing between the	characters)

• Slice	operator [n:m] copies out	the	part	of	the	paper	between	
the n andm positions

• Result	of	[n:m] will	be	of	length	(m-n)

22

SLICING
22

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• If	you	omit	the	first	index	(before	the	colon),	the	slice	starts	at	
the	beginning	of	the	string	(or	list)

• If	you	omit	the	second	index,	the	slice	extends	to	the	end	of	
the	string	(or	list)	

• If	you	provide	value	for n that	is	bigger	than	the	length	of	the	
string	(or	list),	the	slice	will	take	all	the	values	up	to	the	end

• No	“out	of	range”	error	like	the	normal	indexing	operation

23

STRINGS
23

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• Comparing	strings:	strings	are	sorted in	the	alphabetical	order	
(except	that	all	uppercase	letters	come	before	the	lowercase)

• Strings	are immutable
(existing	string	cannot	be	change,	new	one	should	be	created	
instead)

24

STRINGS
24

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• The in /	not	in operator	tests	for	membership
• Method	index is	the	opposite	of	the	indexing	operator	– it	
takes	a	character	(item	in	case	of	a	list)	and	finds	the	index	of	
the	character	/	item	(if	not	found	then	exception is	raised)

• Method	find works	for	strings	in	a	similar	way	(If	the	character	
is	not	found,	the	function	returns -1)

25

STRINGS
25

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• The splitmethod:	it	splits	a	single	multi-word	string	into	a	list	
of	individual	words,	removing	all	the	whitespace	between	
them	(whitespace	are:	tabs,	newlines,	spaces)

26

STRINGS
26

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/strings.html

• The formatmethod	substitutes	its	arguments	into	the	place	
holders	(numbers	are	indexes	of	the	arguments)

• Format	specification — it	is	always	introduced	by	the	colon :
• Field	is	aligned	to	the	left <,	center ^,	or	right >
• Width	allocated	to	the	field	within	the	result	string
• Type	of	conversion	
• Specification	of	decimal	places (.2f is	useful	for	working	with	
currencies	to	two	decimal	places.)

27

LISTS
27

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• A list is	an	ordered	collection	of	values
• Values	of	a	list	are	called	its elements or items
• Similar	to	strings	(ordered	collections	of	characters),	except	
that	the	elements	of	a	list	can	be	of	any	type

• Lists	and	strings	— and	other	collections	that	maintain	the	
order	of	their	items	— are	called sequences

• List	within	list	is	said	to	be nested
• List	with	no	elements	is	called	an	empty list,	and	is	denoted []

28

LISTS
28

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Expression	evaluating	to	an	integer	can	be	used	as	an	index
• Function	len returns	length	of	a	list	(number	of	its	elements)
• Testing	membership	using	in /	not	in
• Operators	+ (concatenation)	and	* (repetition)

29

LISTS
29

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Lists	are	mutable (we	can	change	their	elements)
• Use	same	slicing	principles	as	for	strings
• Use	del to	delete	list	elements

30

REFERENCES	– STRINGS	vs.	LISTS
30

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Variables a and b refer	to	string	object	with	letters "banana”
• Use	is operator	or	id function	to	find	out	the	reference
• Strings	are immutable,	Python	optimizes	resources	by	making	
two	names	that	refer	to	the	same	string	value	refer	to	the	
same	object

• Not	the	case	of	lists:	a and b have	the	same	value	(content)	
but	do	not	refer	to	the	same	object

Strings

Lists

31

LISTS	– ALIASING,	CLONING
31

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• If	we	assign	one	variable	to	another,	both	variables	refer	to	
the	same	object

• The	same	list	has	two	different	names we	say	that	it	
is aliased (changes	made	with	one	alias	affect	the	other)

• Recommendation:	avoid	aliasing	when	you	are	working	with	
mutable	objects

• If	need	to	modify	a	list	and	keep	a	copy	of	the	original	use	the	
slice	operator	(taking	any	slice	of a creates	a	new	list)

32

LIST	PARAMETERS
32

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

source	http://openbookproject.net/thinkcs/python/english3e/lists.html

• Passing	a	list	as	an	argument	passes	a	reference to	the	list,	
not	a	copy	or	clone	of	the	list

• So	parameter	passing	creates	an	alias

33

LIST	METHODS
33

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

Explore	list	methods	on	your	own!
Source	by	Tomas	Svoboda	PRG	2016/2017	

34

LIST	PARAMETERS
34

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

• Concept:	pure	functions	vs.	modifiers
• Pure	function does	not	produce	side	effects!
• Pure	function	communicates	with	the	calling	program	only	
through	parameters (it	does	not	modify)	and	a	return	value	

• Do	not	alter	the	input	parameters	unless	really	necessary	
• Programs	that	use	pure	functions	are	faster	to	develop	and	
less	error-prone	than	programs	that	use	modifiers

Source	by	Tomas	Svoboda	PRG	2016/2017	

35

LISTS	– FUNCTIONS	PRODUCING	LISTS
35

27/10/2017 Michal	Reinštein,	Czech	Technical	University	in	Prague

Source	by	Tomas	Svoboda	PRG	2016/2017	

