A4B33ALG 2010/04

One dimensional searching

Searching in an array
naive search, binary search, interpolation search

Binary search tree (BST)
operations Find, Insert, Delete

A4B33ALG 2010/04

Naive search in a sorted array — linear, SLOW.

Array
Sorted array: Size =N

363(369|388(603(638|693(803|833|836|839|860(863|938[939(966|968(983|993

Find 993 !
Tests: N @ v
NRRRRRIRRRRNRRIRRIRIRIRS
363(369(388|603(638|693|803(833|836(839|860(863|938|939(966|968|983(99

3

Find 363!

S\iv Tests: 1 @
36

3[(369[388]603]638|693|803|833|836(839{860[{863]938|939|966|968(983(993

Search in a sorted array — binary, FASTER

\
~

A4B33ALG 2010/04

4
e

©

363(369(388(603(638|693|803|833(836(839(860(863|938|939/|966|968(983[993
Py Py-rs c—m E— A PR B— s g
§63|369!38x|@'.-v|WU,WUIUUBIR?’%I836 839(860|863(938/939|966(968|983(993
1 test 839(860(863(938(939|966(|968|983(|993
————
839[860|863|938(939|966[988E48 <|993J
1 test 839|860 8?3'3|938|939
839]860(863 [5361939
ay
1 test |839|860 863
iUSS,SGO 863
1 test %v

863

A4B33ALG 2010/04
sy

:@:

Search in a sorted array — binary, FASTER @

Find 863!

The search follows the
structure of a binary tree.

363(369|388(603(638|693(803|833|836|839|860(863|938(939(|966|968(983|993

A4B33ALG 2010/04

Search in a sorted array — binary, FASTER

S ok
. (@)=
L)=22
Search time
‘ @2 N =2¢ =>
(D=2° K =10g,(N) é

A4B33ALG 2010/04
Binary search

def binarySearch(arr, value):
11 = 0; 13 = len(arr)-1
while 11 < 13:

2 = (i1 +1i3) // 2
T arr[i12] < value:

if 11 = 12+1
Ise: 13 = 12
if arr[i11] == value: return il # found or
return -1 # not found

A4B33ALG 2010/04

Interpolation search

Array al | Find q = 939

363|369(388(603(638|693|803|833|836(839|860|863|938|939|966|968(983(993
0O 1 2 13 15 17

first position last

When the values are expected to be more or less evenly
distrubuted in the range the interpolation search might help.
The position of the element should roughly correspond to its value.

(g — a[first])
position = first + - - —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363
position = 0 + ——————————— *(17 — 0) = 15.54 Example
993 - 363

A4B33ALG 2010/04

Interpolation search

Array al | Find q = 939
363|369(388|603|638[693(803|833|836(839(860|863|938(939(966 968M
0 1 2 13 14 15 17
first position - ‘ last

When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.

(g — a[first])
position = first + -~ —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363 Example
position = 0 + ——————————— *(15 - 0) = 14.12
968 - 363

Interpolation search

A4B33ALG 2010/04

Array al | Find q = 939
363|369(388|603|638[693(803|833|836(839(860|863|938(939(966 3
0 1 2 13 14715 17
first position last
When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.
(g — a[first])
position = first + -~ —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363 Example
position = 0 + -~ —————————- *(14 - 0) = 13.37
966 - 363 Finished.

Search in a sorted array — speed comparison

A4B33ALG 2010/04

Array |Linear search Interpolation search Binary search
size N | average case average case cca average / worst case
10 5.5 1.60 4 5
30 15.5 2.12 5 6
100 50.5 2.56 4 8
300 150.5 2.89 9 10
1 000 500.5 3.18 10 11
3 000 1 500.5 3.41 12 13
10 000 5000.5 3.63 14 15
30 000 15 000.5 3.80 15 16
100 000 50 000.5 3.96 67 18
300 000 150 000.5 4.11 17 19
1 000 000 500 000.5 4.24 20 21
Asymptotic : Random uniform distribution Due to the binary
complexity Obviously ©(n) log,(log,(N)) € ®(log(log(N))) tree structure ®(log(n))

Binary search tree

For each node Y it holds:

Keys in the left subtree of Y

are smaller than the key of Y.

Keys in the right subtree of Y

are bigger than the key of Y.

18

22

25

34

40

45

51

68

70

/3

74

76

92

A4B33ALG 2010/04

10

A4B33ALG 2010/04

Binary search tree

BST may not be balanced
and usually it is not.

BST may not be regular
and usually it is not.

Apply the INORDER
traversal to obtain
sorted list of the

keys of BST.

BST is flexible due to operations:
Find —return the pointer to the node with the given key (or null).

Insert — insert a node with the given key.
Delete — (find and) remove the node with the given key.

11

A4B33ALG 2010/04

Binary search tree implementation -- Python

Tree .. Node ™
’0’ \ NOde

representation

A N class Node:

73501 N def __init_ (self, key):
self.left = None
self.right = None
self.key = key

12

A4B33ALG 2010/04

Binary search tree implementation -- Python

Tree
., Node
\
\\
//\\ ,\\ \\
e) > \
/ \\ 4 \ \
4 o % \ P G N \

7 S . N , . \ \
/ \ P N\ \
e e e e e e e e - = KN v N _‘ \

... TN\
A
6084
335 22107

class Node:
def intt_ (self, key):
self.left = None
self.right = None
self.key = key

class BinaryTree:
def _init_ (self):
self.root = None

13

Operation Find in BST

Each BST
operation starts
In the root.

Iteratively

A4B33ALG 2010/04

def Findlter(self, key, node):
while(True):

1T node == None - return

None

1T key < node.key : node
else > nhode

Findlter(key, tree.root) # call

if key == node.key : return

node
node . left
node.right

14

Operation Find in BST

A4B33ALG 2010/04

Each BST
operation starts
In the root.
_Recursively
def Find(self, key, node):
i1f node == None > return None
1T key == node.key : return node
1T key < node.key : self.Find(key, node.left)
else - self_Find(key, node.right)

Find(key, tree.root) # call

15

A4B33ALG 2010/04

Operation Insert in BST

Insert 42 é @

Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

16

Operation Insert in BST iteratively

A4B33ALG 2010/04

def Insertlter(self, key):
IT self.root == None:
self._root = Node(key);
return self.root

node = self._root
while True:
if key == node.key: return None # no duplicates
1T key < node.key:
1T node.left == None:
node. left = Node(key); return node.left
else: node = node.left
else:
1f node.right == None:
node.right = Node(key); return node.right
else: node = node.right

17

Operation Insert in BST recursively

A4B33ALG 2010/04

def Insert(self, key, node):
1T key == node.key: return
1T key < node.key:
i1f node.left == None:
else:
else:
iIT node.right == None:

else:

no duplicates

node. left = Node(key)
self.Insert(key, node.left)

node.right = Node(key)
self.Insert(key, node.right)

18

A4B33ALG 2010/04

Building BST by repeated Insert

insert 40
Insert 60 Insert 70 (40)
(60) (20) (60)
(50 9)
insert 50 (40) insert 30 (40)
(60) (20] (60,
(50) 3 G @
Insert 20 (40) Insert 10 (40)
(20) (60,
(0 G G @)

19

A4B33ALG 2010/04

The shape of the BST depends on the order in which data are inserted.

insert 50 iInsert 70
Insert 30

@ insert 10
insert 60 @

(30 (60)
insert 20 Insert 40

20

A4B33ALG 2010/04

Operation Delete in BST (l.)

Delete a node with O children (= leaf)

Leaf with key 25
disappears

Delete I. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to null.

21

A4B33ALG 2010/04

Operation Delete in BST (ll.)

Delete a node with 1 child.

Delete 68 é @

(34) (76
n
® D @) &
(8 (22) (45) (73)
Node with key 68 (18) (42) (70) (74)
disappears
Change the 76 --> 68 reference to 76 --> 73 reference.
Delete II. Find the node (like in Find operation) with the given key and

set the reference to it from its parent to its (single) child.

22

A4B33ALG 2010/04

Operation Delete in BST (ll.)

Delete a node with 1 child. Before

Delete 68

23

A4B33ALG 2010/04

Operation Delete in BST (llla.)

Delete a node with 2 children.

Delete 34 X @) (76)

Key 34 disappears.
And it is substituted by key 36. .

Delete llla.
1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.
2. Point from y to children of x, from parent of y point to the child of v instead of v,

from parent of x point to .

24

A4B33ALG 2010/04

Operation Delete in BST (llla.)

Before

Delete 34

old
edges/pointers/references

new
edges/pointers/references

25

A4B33ALG 2010/04

Operation Delete in BST (lllb.) is equivalent to Delete llla.

Delete a node with 2 children.

(51
Delete 34 « N
@ @
S D) @& D
@& © &
Key 34 disappears. .
And it is substituted by key 22. ...
Delete llIb.

1. Find the node (like in Find operation) with the given key and then
find the rightmost (= smallest key) node y in the left subtree of x.

2. Point from y to children of x, from parent of y point to the child of v instead of v,
from parent of x point to y.

26

A4B33ALG 2010/04
Operation Delete in BST (lllb.) is equivalent to Delete llla.

Delete 34 Zeieie

old
edges/pointers/references

new

edges/pointers/references
e

The moved node may
itself have a child.
In such case apply to it
the variant Delete II.

27

Operation Delete in BST

A4B33ALG 2010/04

def Delete (self, key):

homework. . .

Asymptotic complexities of operations Find, Insert, Delete in BST

BST with n nodes

Operation | Balanced Maybe not balanced
Find O(log(n)) O(n)
Insert ®(log(n)) O(n)
Delete ®(log(n)) O(n)

28

