
Multiagent Systems (BE4M36MAS)

Solving Extensive-Form Games

Branislav Bošanský and Michal Pěchouček

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

November 14, 2017

Previously ... on multi-agent systems.

1 Extensive-Form Games

2 Transformations between representations

Imperfect Information Extensive-Form Games

Imperfect Information Extensive-Form Games

Why backward induction does not work?

Exact algorithms:

We can solve an EFG as a normal-form game.

We can use so-called sequence form to formulate a linear
program that has a linear size in the size of the game.

Approximate algorithms:

Counterfactual Regret Minimization (CFR)

Excessive Gap Technique (EGT)

Imperfect Information EFG

Strategies in EFGs with Imperfect Information

Mixed strategies are defined as before as a probability distribution
over pure strategies.

There are also other types of strategies in EFGs, namely behavioral
strategies:

A behavioral strategy of player i is a product of probability
distributions over actions in each information set

βi :
∏
I∈II

∆(χ(I))

There is a broad class of imperfect-information games in which the
expressiveness of mixed and behavioral strategies coincide – perfect
recall games. Intuitively speaking, in these games no player forgets
any information she previously knew.

Perfect Recall in EFGs

Definition

Player i has perfect recall in an imperfect-information game G if
for any two nodes h,h′ that are in the same information set for
player i, for any path consisting of decisions of player i,
h0, a0, . . . , hn, an, h from the root of the game tree to h and for
any path h0, a

′
0, . . . , h

′
m, a

′
m, h

′ from the root to h′, it must be the
case that:

1 n = m

2 for all 0 ≤ j ≤ n, hj and h′j are in the same equivalence class
for player i, and aj = a′j

Definition

We say that an EFG has a perfect recall if all players have perfect
recall. Otherwise we say that the game has an imperfect recall.

Perfect vs. Imperfect Recall

Conditioning on a complete history
induces exponentially large
strategies.

They are easier to solve.

Strategies can be compactly
represented.

Not necessary information can be
forgotten; hence, the strategies can
be (exponentially) smaller.

Much harder to solve.

Nash equilibrium (in behavioral
strategies) might not exist.

Imperfect Recall Game with no NE

We thus focus on games with perfect recall.

Induced Normal-Form Game

XZ XW Y Z YW

ACE 3 3 1 1

ACF 3 3 1 1

ADE −2 −2 3 3

ADF −2 −2 3 3

BCE 2 0 2 0

BCF 1 3 1 3

BDE 2 0 2 0

BDF 1 3 1 3

Normal form representation is too verbose. The same leaf is stated
multiple times in the table.

We can avoid it by using sequences.

Sequences in Extensive-Form Games

Definition

An ordered list of actions of player i executed from the root of the
game tree to some node h ∈ H is called a sequence σi. Set of all
possible sequences of player i is denoted Σi.

Sequences in Extensive-Form Games

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Definition

An ordered list of actions of player i executed from the root of the
game tree to some node h ∈ H is called a sequence σi. Set of all
possible sequences of player i is denoted Σi.

Extended Utility Function

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We need to extend the utility function to operate over sequences:

g : Σ1 × Σ2 → R,

where g(σ1, σ2) =

u(z) iff z corresponds to a leaf (terminal history) represented
by sequences σ1 and σ2

0 otherwise

Extended Utility Function

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

In games with chance a combination of sequences can lead to
multiple nodes/leafs. g(σ1, σ2) =∑

z∈Z′ C(z)u(z) iff Z ′ is a set of leafs that correspond to
history represented by sequences σ1 and σ2, and C(z)
represents the probability of leaf z being reached due to
chance

0 otherwise

Extended Utility Function

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Examples:

g(∅,W) = 0

g(AC,W) = 0

g(BF,W) = 3

g(A,X) = 0

. . .

Realization Plans

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We need to express the strategy using sequences. We need to be
prepared for all situations.

Let’s assume that the opponent (player 2) will play everything and
assign a probability that certain sequence σ1 will be played.

A realization plan (ri(σi)) is a probability that sequence σi will be
played assuming player −i plays such actions that allow actions
from σi to be executed.

Realization Plans

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Examples:

r1(∅) = 1

r1(A) + r1(B) = r1(∅)
r1(AC) + r1(AD) = r1(A)

r1(BE) + r1(BF) = r1(B)

r2(∅) = 1

r2(X) + r1(Y) = r2(∅)
r2(Z) + r1(W) = r2(∅)

Best Response

4(Σ1) ©(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We now have almost everything – a strategy representation
and an extended utility function.
We will have a maximization objective and need a best
response for the minimizing player.
A player selects the best action (the one that minimizes the
expected utility) in each information set.
An expected utility after playing an action in an information
set corresponds to a sum of (1) utility values of leafs and (2)
information sets that are immediately reached.

Sequence Form Linear Program

We are now ready to state the linear program:

max
r1,v

v(root) (1)

s.t. r1(∅) = 1 (2)

0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (3)∑
a∈A(I1)

r1(σ1a) = r1(σ1) ∀σ1 ∈ Σ1, ∀I1 ∈ inf1(σ1) (4)

∑
I′∈inf2(σ2a)

v(I ′) +
∑
σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I) ∀I ∈ I2, σ2 = seq2(I), ∀a ∈ A(I)

(5)

seqi(I) is a sequence of player i to information set,

I ∈ Ii, vI is an expected utility in an information set,

infi(σi) is an information set, where the last action of σi has been
executed,

σia denotes an extension of a sequence σi with action a

Sequence Form LP - Example

max
r1,v

v(inf2(X)) + v(inf2(Z)) (6)

r1(∅) = 1; r1(A) + r1(B) = r1(∅) (7)

r1(AC) + r1(AD) = r1(A), (8)

r1(BE) + r1(BF) = r1(B) (9)

v(inf2(X)) ≤ 0 + g(AC,X)r1(AC) + g(AD,X)r1(AD) (10)

v(inf2(Y)) ≤ 0 + g(AC, Y)r1(AC) + g(AD,Y)r1(AD) (11)

v(inf2(Z)) ≤ 0 + g(BE,Z)r1(BE) + g(BF,Z)r1(BF) (12)

v(inf2(W)) ≤ 0 + g(BE,W)r1(BE) + g(BF,W)r1(BF) (13)

Sequence Form LP - Example

min
r2,v

v(inf1(A)) (14)

r2(∅) = 1; r2(X) + r2(Y) = r2(∅) (15)

r2(Z) + r2(W) = r2(∅) (16)

v(inf1(A)) ≥ inf1(AC), v(inf1(B)) ≥ inf1(BE) (17)

v(inf1(AC)) ≥ g(AC,X)r2(X) + g(AC, Y)r2(Y) (18)

v(inf1(AD)) ≥ g(AD,X)r2(X) + g(AD,Y)r2(Y) (19)

v(inf1(BE)) ≥ g(BE,Z)r2(Z) + g(BE,W)r2(W) (20)

v(inf1(BF)) ≥ g(BF,Z)r2(Z) + g(BF,W)r2(W) (21)

Sequence Form Linear Complementarity Program

Nash equilibrium of a general-sum game can be (similarly to NFGs)
found by solving a sequence form LCP (linear complementarity problem)

satisfiability program

realization plans for both players

connection between realization plans and best responses via
complementarity constraints

best-response inequalities are rewritten using slack variables

ri(∅) = 1 (22)

0 ≤ ri(σi) ≤ 1 (23)∑
a∈A(Ii)

r(σia) = r(σi) (24)

∑
I′∈inf−i(σ−ia)

v(I ′) +
∑
σi∈Σi

g(σi, σ−ia)ri(σi) + sσ−ia = v(I) (25)

r(σi)s(σi) = 0 (26)

s(σi) ≥ 0 (27)

General Sum Extensive-Form Games

For computing one (any) Nash equilibrium

Lemke algorithm (Lemke-Howson)

If we want to compute some specific Nash equilibrium (e.g.,
maximizing welfare, maximizing utility for some player, etc.)

MILP reformulations (Sandholm et al. 2005, Audet et al.
2009)

complementarity constraints can be replaced by using a binary
variable that represents whether a sequence is used in a
strategy with a non-zero probability

big-M notation

poor performance (104 nodes) using state-of-the-art MILP
solvers (e.g., IBM CPLEX, ...)

Approximate Algorithms for Extensive-Form Games

Instead of computing the strategy we can employ learning
algorithms and learn the best strategy via repeated (simulated, or
self-) play.

In zero-sum games, no-regret learning techniques are very popular
(and useful in practice).

Main idea:

construct the complete game tree

in each iteration traverse through the game tree and adapt the
strategy in each information set according to the learning rule

this learning rule minimizes the (counterfactual) regret

the algorithm minimizes the overall regret in the game

the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

Player i’s regret for not playing an action a′i against opponent’s
action a−i

ui(a
′
i, a−i)− ui(ai, a−i)

In extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value)

vi(s, I) =
∑
z∈ZI

πs−i(z[I])πsi (z|z[I])ui(z),

where

ZI are leafs reachable from information set I

z[I] is the history prefix of z in I

πsi (h) is the probability of player i reaching node h following
strategy s

Regret and Counterfactual Regret

Counterfactual value for one deviation in information set I;
strategy s is altered in information set I by playing action
a : vi(sI→a, I)

at a time step t, the algorithm computes counterfactual regret for
current strategy

rti(I, a) = vi(sI→a, I)− vi(sI , I)

the algorithm calculates the cumulative regret

RT
i =

T∑
t=1

rti(I, a), RT,+
i (I, a) = max{RT

i (I, a), 0}

strategy for the next iteration is selected using regret matching

st+1
i (I, a) =


RT,+i (I,a)∑

a′∈A(I) R
T,+
i (I,a′)

if the denominator is positive

1
|A(I)| otherwise

Regret and Counterfactual Regret

Average cumulative regret converges to zero with iterations and
average strategy converges to an optimal strategy.

There are many additional improvements (sampling, MC versions,
...) and modifications of CFR.

CFR+ was used to solve two-player limit poker (Bowling et al.
2015) that uses only positive updates of regret and instead of the
average strategy the algorithm uses the immediate (or current)
strategy.

CFR+ was used as a method in DeepStack algorithm (Moravcik et
al. 2017).

Comparing SQF and CFR

Sequence Form

the leading exact algorithm
(with incremental variants)

large memory requirements

incremental variants (or
double-oracle algorithm
(Bosansky et al. 2014))
work very well on games
with small support

CFR

practical optimization
algorithm

memory requirements can be
reduced with domain-specific
implementation

converges very slowly if the
close approximation is
required

Our Ongoing Research

Solving a game with as low memory as possible – automatic
abstraction construction and solving a game

Generalizing DeepStack for domains other than Poker

Computing Stackelberg equilibrium in extensive-form games

