## DISTRIBUTED CONSTRAINTS SATISFACTION

BE4M36MAS - Multiagent systems

CENTRALIZED CASE

## Constraint satisfaction problem

Find an assignment for variables that satisfy given constraints.

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
$C_{i} \subseteq D_{i_{1}} \times \cdots \times D_{i_{r}}$ denotes a $r$-ary constraint over variables $x_{i_{1}}, \ldots, x_{i_{r}}$


## Constraint satisfaction problem

Solution: $n$-tuple $\left(d_{1}, \cdots, d_{n}\right)$, such that:

- $d_{i} \in D_{i}$, for $1 \leq i \leq n$
- $\left(d_{i_{1}}, \ldots, d_{i_{r}}\right) \in C_{k}$ for every constraint $C_{k} \subseteq D_{i_{1}} \times \cdots \times D_{i_{r}}$


## Centralized algorithm

## Synchronized backtracking

$v_{i} \leftarrow$ value from $D_{i}$ consistent with $\left(v_{1}, \ldots, v_{i-1}\right)$;
if No such $v_{i}$ exists then
| backtrack;
else if $i=n$ then
| stop;
else
| ChooseValue $\left(x_{i+1},\left(v_{1}, \ldots, v_{i}\right)\right)$;
end
Algorithm 1: ChooseValue ( $\left.x_{i},\left(v_{1}, \ldots, v_{i-1}\right)\right)$

## Centralized algorithm

## Enhancements?

- AC-3 algorithm? (arc consistency - e.g. combinatorial optimization)

DISTRIBUTED CASE

## Distributed case

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
- $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents

Every variable must be assigned to one of the agents. $\rightarrow$ otherwise the DCSP problem is not fully defined

## Distributed case

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
- $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents

Every variable must be assigned to one of the agents. $\rightarrow$ otherwise the DCSP problem is not fully defined

## Distributed case

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
- $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents

Every variable must be assigned to one of the agents.
$\rightarrow$ otherwise the DCSP problem is not fully defined

## Example



## ASYNCHRONOUS BACKTRACKING

## What do we assume?

- Every agent controls a single variable
- Constraints are binary
- Messages are delivered in a finite time (but this time may vary randomly)
- Messages from a single agent are delivered in the order they were sent
$\rightarrow$ imagine an unreliable TCP/IP network


## What does an agent initially knows?

- Total ordering of agents (priorities)
- Constraints he is involved in
- Domain of a variable controlled by himself
- Current assignment
- Set of outgoing links ( $\sim$ who needs to know my assignment)
- Set of incoming links ( $\sim$ who will notify me about his assignment)
- Agent view - agent's idea about current assignment of other agents

$$
\rightarrow \text { Mav be out of sync! }
$$

- Nogood store - justification of forbidden values in the domain


## Data structures

- Current assignment
- Set of outgoing links (~ who needs to know my assignment)
- Set of incoming links ( $\sim$ who will notify me about his assignment)
- Agent view - agent's idea about current assignment of other agents
$\rightarrow$ May be out of sync!
- Nogood store - justification of forbidden values in the domain
- Current assignment
- Set of outgoing links ( $\sim$ who needs to know my assignment)
- Set of incoming links ( $\sim$ who will notify me about his assignment)
- Agent view - agent's idea about current assignment of other agents
$\rightarrow$ May be out of sync!
- Nogood store - justification of forbidden values in the domain
- Current assignment
- Set of outgoing links ( $\sim$ who needs to know my assignment)
- Set of incoming links ( $\sim$ who will notify me about his assignment)
- Agent view - agent's idea about current assignment of other agents
$\rightarrow$ May be out of sync!
- Nogood store - justification of forbidden values in the domain
- Current assignment
- Set of outgoing links ( $\sim$ who needs to know my assignment)
- Set of incoming links ( $\sim$ who will notify me about his assignment)
- Agent view - agent's idea about current assignment of other agents
$\rightarrow$ May be out of sync!
- Nogood store - justification of forbidden values in the domain


## Minimalistic example - meeting scheduling

- John needs to arrange a meeting with Bob and Alice
- As all agents, he is a busy guy - both meetings must happen in a single day
- Bob doesn't know about Alice's meeting and vice versa


## Minimalistic example - meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\chi=\left\{X_{\text {Alice }}, X_{\text {Bob }}, X_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Bob }}=\{$ Tue, Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$
$C=\left\{X_{\text {Bob }}=X_{\text {John }}, X_{\text {Alice }}=X_{\text {John }}\right\}$

## Minimalistic example - meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Dob }}=\{$ Tue Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$
$\mathcal{C}=\left\{x_{\text {Bob }}=x_{\text {John }}, x_{\text {Alice }}=x_{\text {John }}\right\}$

## Minimalistic example — meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$.


Mon, Tue, Thu
$C=\left\{\right.$ XBob $=X_{\text {John, }}$ XAlice $=$ XJohn $\}$

## Minimalistic example - meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$.
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Bob }}=\{$ Tue, Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$
$\mathcal{C}=\left\{x_{\text {Bob }}=x_{\text {John }}, x_{\text {Alice }}=x_{\text {John }}\right\}$

## Minimalistic example — meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$.
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Bob }}=\{$ Tue, Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$
$\mathcal{C}=\left\{x_{\text {Bob }}=x_{\text {John }}, x_{\text {Alice }}=x_{\text {John }}\right\}$

## Minimalistic example - meeting scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent $i$ controls variable $x_{i}$.
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Bob }}=\{$ Tue, Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$

$\mathcal{C}=\left\{x_{\text {Bob }}=x_{\text {John }}, x_{\text {Alice }}=x_{\text {John }}\right\}$

## Minimalistic example - meeting scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: $\varnothing$

Let's all propose a date and see what happens!

Bob $\rightarrow$ John:
Ok? (Bob $\rightarrow$ Tue)
Alice $\rightarrow$ John:
Ok?(Alice $\rightarrow$ Mon)


Alice: $\varnothing$
Bob: $\varnothing$
John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Tue $\}$

## Minimalistic example — meeting scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Tue $\}$

John: Argh, I wanted to have both meetings in one day :-( Let's make them change their minds...

John $\rightarrow$ Bob:
Nogood( $\{$ Bob $\rightarrow$ Tue, Alice $\rightarrow$ Mon $\}$ )


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

## Minimalistic example - meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

Bob: Who is that Alice? I've never heard of her.

Bob $\rightarrow$ Alice:
AddLink(Alice $\rightarrow$ Bob)


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

## Minimalistic example - meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

Bob: John told me that the meeting cannot happen on Tuesday if Alice opts for Monday. Let's try Thursday then...

Bob $\rightarrow$ John:
Ok?(Bob $\rightarrow$ Thu)


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Thu $\}$

## Minimalistic example — meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Thu $\}$

Alice: Bob, why are you so curious?
Alice $\rightarrow$ Bob:
Ok?(Alice $\rightarrow$ Mon)


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Thu $\}$

## Minimalistic example — meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon, Bob $\rightarrow$ Thu $\}$

John: They tried it again. Alright, one more try...

John $\rightarrow$ Bob:
Nogood(\{Bob $\rightarrow$ Thu, Alice $\rightarrow$ Mon $\}$ )


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

## Minimalistic example — meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Mon $\} \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

Bob: I have run out of options. It's up to Alice now...

Bob $\rightarrow$ Alice:
Nogood(\{Alice $\rightarrow$ Mon\})


Alice: $\varnothing$
Bob: $\varnothing$
John: $\{$ Alice $\rightarrow$ Mon $\}$

## Minimalistic example — meeting scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: $\{$ Alice $\rightarrow$ Mon $\}$

Alice: I have one more option, let's try Thursday.

Alice $\rightarrow$ Bob, John:
Ok? $(\{$ Alice $\rightarrow$ Thu $\})$


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Thu $\} \quad$ John: $\{$ Alice $\rightarrow$ Thu $\}$

## Minimalistic example - meeting scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Thu $\} \quad$ John: $\{$ Alice $\rightarrow$ Thu $\}$

John: Finally. Thursday seems like a viable option.


Alice: $\varnothing \quad$ Bob: $\{$ Alice $\rightarrow$ Thu $\} \quad$ John: $\{$ Alice $\rightarrow$ Thu, Bob $\rightarrow$ Thu $\}$

## Asynchronous backtracking



Add unknown variables
$\qquad$

## Asynchronous backtracking



ASSIGNMENT

## n -Queens problem in a distributed way

$n$ queens from a $n \times n$ world had a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sigh t) - They don't talk to each other except for few formal messages Ok? Nogood AddLink


Help them to find their place in the world!

## n -Queens problem in a distributed way

$n$ queens from a $n \times n$ world had
a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Nogood AddLink


Help them to find their place in the
world!

## n -Queens problem in a distributed way

$n$ queens from a $n \times n$ world had
a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink


Help them to find their place in the world!

## n -Queens problem in a distributed way

$n$ queens from a $n \times n$ world had
a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink


Help them to find their place in the world!

## n-Queens problem in a distributed way

Every agent controls one queen and decides about her position within its row.

In the end, one of the following has to happen:

- One of the agents reports that no solutions exists
- Each queen reports her position in her row (i.e. a column in which it is located)
$\uparrow$ of course correctly ;-)

Any asynchronous and distributed solution is acceptable (e.g. ABT).
$\rightarrow$ No centralized knowledge allowed!
$\rightarrow$ No synchonization!
$\rightarrow$ No hardcoded solutions!

## Total: 12 points

- Solve $3 \times 3$ chessboard problem with 3 queens ( 3 points)
- Solve $4 \times 4$ chessboard problem with 4 queens ( 2 points)
- Solve $8 \times 8$ chessboard problem with 8 queens ( 2 points)
- Solve $12 \times 12$ chessboard problem with 12 queens (3 points)


## n-Queens problem in a distributed way

Guaranteed termination detection (1 point)

- How to detect quiescence in an algorithmic way?
- You may want to get inspired by other DCSP/DCOP algorithms.

Quiescence should be discovered using local knowledge only.
$\rightarrow$ Sending whole solution to a single agent for verification is not an option!

## Report (1 point)

- How is the n -queens problem modeled as a DCSP? (variables, domains, constraints, agents)
- How is the $A B T$ algorithm customized for the $n$-queens problem?
- How do you determine priorities between agents?
- How do you detect that the search has terminated?

ABT EXAMPLE

