
ADVANCED JASON

BE4M36MAS - Multiagent systems

LAST TUTORIAL ISSUES

Malfunctioning Jason

Hopefully resolved (if not, tell me about that!)

3/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

Ordering of plans

� Source file is scanned top down

� First applicable plan is executed

+!step <- !random move ; !step.

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← unreachable

+!step : cell(X,Y,gold) <- +gold(X,Y) ; !step. ← “infinite loop”

+!step <- !random move ; !step.

4/33

ASSIGNMENT

Mining world

Find, collect and carry all gold stones from their location to a

depot!

� Miners do not know positions of gold stones and depots —

they must find them

� They may carry at most one gold stone at a time

� They have limited range of sight (8-neighbourhood)

6/33

Mining world — percepts

� pos(X,Y) — (X ,Y) position of the miner

� name(N) — name of the current miner

� gsize(,W,H) — width and height of current map

� cell(X,Y,gold), cell(X,Y,depot), cell(X,Y,ally),

cell(X,Y,obstacle)

� carrying gold

7/33

Mining world — percepts

cell(2,2,gold).

cell(1,0,depot).

No cell percepts!

8/33

Mining world — actions

� do(left), do(right), do(up), do(down) — movement in

the grid

� do(pick), do(drop) — manipulating gold stones

� do(skip) — use it to update your percepts (nearly no delay)

9/33

Mining world — Problem 1

Gold stones are heavy.

→ there must be another miner in 4-neighbourhood for do(pick)

do(pick) succeeds do(pick) fails

10/33

Mining world — Scenario 1

Gold stones are added in runtime

→ Your miners must be able to find

them at any time

2 points

11/33

Mining world — Scenario 2

� You are racing the time now

� Your miners should not be

much slower than (inefficient)

reference solution

2 points

12/33

Mining world — Scenario 3

Beware of obstacles

→ Your team should make the way

through the mine in time again

2 points

13/33

Mining world — Scenario 4

Pairs of your miners got separated

→ Hardcoded pairs helper–carrier

will get into troubles

2 points

14/33

Mining world — Scenario 5

The final blow, is it?

(there might be multiple depots)

1 point

15/33

Mining world — Competition

You can get 1 more point for implementing a fast mining team.

A competition between your submissions will be held

→ Results from multiple runs on Scenarios 3–5 will be averaged
(Average of values containing ∞ is infinite)

16/33

Mining world — Evaluation

Mines used for evaluation will not be identical to the public

instances!

→ see the package ,,Testing scenarios”

17/33

Report

You are asked to submit a short report:

� What approach have you used for discovering gold stones and

depots?

� How have you solved synchronization problems?

� What issues have you encountered and how have you

overcome them?

Reward: 1 point

18/33

Too easy?

Advanced solvers are encouraged to try to deal with more difficult

setups...

� Narrow passages

� Deadends

� Complex shapes of obstacles

� ...

Possible reward: extra points

(number of your points from tutorials can be at most 40 unfortunately)

19/33

ADVANCED JASON

Test goals

+!say hello(N) <- ?greeting(G) ; .print(G," ",N).

1. greeting(G) matches the belief base → G gets unified

2. A plan for +?greeting(G) is executed

→ G gets unified with applicable value

3. A failure plan for -?greeting(G) is applied

21/33

Test goals

Example:

+?random move(left) : math.random < 0.25.

+?random move(right) : math.random < 0.33.

+?random move(up) : math.random < 0.5.

+?random move(down).

+!step <- ?random move(D) ; do(D).

22/33

Communication

Talking with one colleague:

.send(Rcpt, ilf, Message)

ilf ∈ {tell, untell, achieve, askOne, . . .}

� tell — adds belief Message to Rcpt’s belief base

� untell — removes a belief previously told

� achieve — adds intention !Message for Rcpt

23/33

Communication

Example:

+!run <- ?name(N) ; .send(miner1, achieve,

say hello(N)).

+!say hello(N) <- .print("Hello from ",N).

24/33

Communication

The askOne variant of .send:

.send(Rcpt, askOne, Goal, Result)

Similar to achieve — ?Goal test goal is added.

Execution of the intention is paused until the ?Goal is

(un)satisfied.

� ?Goal unsatisfiable — Result=false

� otherwise — Result contains Goal with all free variables

unified

25/33

Communication

Example

26/33

Lists

X = [1, 2, 3]

� Prepending element into list:

[0 | X] = [0, 1, 2, 3]

27/33

Lists

X = [1, 2, 3]

� Prepending element into list:

[0 | X] = [0, 1, 2, 3]

27/33

Advanced unification

Variables can get unified for more complex terms, e.g.:

!greet(greeting("Hello ", "! How are you?"), "Bob").

+!greet(greeting(Before,After), Who) <- .print(Before,Who,After).

!first([1, 2, 3]).

+!first([X | Xs]) <- .print(X).

Question: What happens if !first([]) is requested?

Task: Write plans for !print all([1,2,3]) intention that lists

all elements of the list.

28/33

Prolog–style beliefs

Example:

valid(X,Y) :- gsize(,W,H) & X>=0 & X<W & Y>=0 & Y<H.

29/33

Atomic plans

An atomic plan is executed intact.

→ No other plan can interfere with actions from the atomic plan

Example:

@pickGoldPlan[atomic]

+?pick gold(X,Y) <- !go to(X,Y) ; do(pick) ; ...

Disclaimer: Beware of deadlocks!

30/33

TIPS

Possible caveats

� Helping miners leaving their square before the do(pick)

action is fully executed

� Miners blocking the way of other miners

� ...

Try to anticipate possible caveats before you encounter them.

→ It will be easier to deal with them

32/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

Tips

� Think before implementation

� Decompose the problem into simple problems (∼ intentions)

first → It will just remain to implement and debug them

� Be prepared for possible issues!

33/33

	Last tutorial issues
	Malfunctioning Jason
	Ordering of plans

	Assignment
	Mining world
	Mining world — percepts
	Mining world — actions
	Mining world — Problem 1
	Mining world — Scenario 1
	Mining world — Scenario 2
	Mining world — Scenario 3
	Mining world — Scenario 4
	Mining world — Scenario 5
	Mining world — Competition
	Mining world — Evaluation
	Report
	Too easy?

	Advanced Jason
	Test goals
	Communication
	Lists
	Advanced unification
	Prolog–style beliefs
	Atomic plans

	Tips
	Possible caveats
	Tips

