
Multiagent Systems (BE4M36MAS)

Distributed Constraint Programming

Branislav Bošanský and Michal Pěchouček

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

December 6, 2016

Previously ... on multi-agent systems.

1 Distributed Constraint Satisfaction Programming

Constraint Network

Definition

A constraint network N is formally defined as a triple 〈X,D,C〉,
where:

X = x1, . . . , xn is a set of variables;

D = {D1, . . . , Dn} is a set of variable domains, which
enumerate all possible values of the corresponding variables;
and

C = {C1, . . . , Cm} is a set of constraints; where a constraint
Ci is defined on a subset of variables Si ⊆ X which comprise
the scope of the constraint (ri = |Si| is the arity of
constraint i)

Hard vs. Soft Constraints

Hard constraint Ch
i is a Boolean predicate Pi that defines valid

joint assignments of variables in the scope

Pi : D
i
1 × . . .×Di

ri → {F, T}

Soft constraint Cs
i is a function Fi that maps every possible joint

assignment of all variables in the scope to a real value

Fi : D
i
1 × . . .×Di

ri → R

Binary Constraint Networks

Synchronous Branch-and-Bound

Agents agree on an variable order and repeat:

1 send partial solution up to Xk−1 to k-th agent.

2 k-th agent generates the next extension to this partial solution
whose partial cost (i.e. lower bound) is not greater than the
upper bound.

3 if the solution cannot be extended: k ← k − 1 (backtrack
control to previous agent).

4 if solution can be extended consistently: update lower bound,
k ← k + 1 (pass control to the next agent)

5 if k > n: stop → if lower-bound (now the total cost) < upper
bound, then upper bound = lower bound; remember best so
far assignment

6 if k < 1: stop → return best so far assignment.

Asynchronous Backtracking Algorithm (ABT) –
assumptions

Agents communicate by sending messages

An agent can send messages to others, iff it knows their
identifiers (directed communication / no broadcasting)

The delay transmitting a message is finite but random

For any pair of agents, messages are delivered in the order
they were sent

Agents know the constraints in which they are involved, but
not the other constraints

Each agent owns a single variable (agents = variables)

Constraints are binary (2 variables involved)

Types of Asynchronous Algorithms for DCOPs

ADOPT: Asynchronous Distributed OPTimization1

First asynchronous complete algorithm for optimally solving DCOP.

Distributed backtrack search using a “opportunistic” best-first
strategy

agents keep on choosing the best value based on the current
available information

Backtrack thresholds used to speed up the search of previously
explored solutions.

Termination conditions that check if the bound interval is less than
a given valid error bound (0 if optimal).

Theorem (Modi et. al 2005)

For finite DCOPs with binary non-negative constraints, ADOPT is
guaranteed to terminate with the globally optimal solution.

1
Modi et al. ”Adopt: asynchronous distributed constraint optimization with quality guarantees” AIJ 2005

ADOPT Overview

Opportunistic best-first search strategy, i.e., each agent keeps on
choosing the value with minimum lower bound.

Lower bounds are more suitable for asynchronous search—a
lower bound can be computed without necessarily having
accumulated global cost information.

Each agent keeps a lower and upper bound on the cost for the
sub-problem below it (given assignments from above) and on the
sub-problems for each one of its children.

It then tells the children to look for a solution but ignore any
partial solution whose cost is above the lower bound because it
already knows that it can get that lower cost.

ADOPT: DFS Tree

ADOPT assumes that agents are arranged in a depth-first search
(DFS) tree:

split constraint graph into a spanning tree and backedges
two constrained nodes must be in the same path to the root
by tree links (same branch), i.e., backedges from a node go to
the ancestors of the node
also termed pseudochildren and pseudoparent of a node

Every graph admits a DFS tree. A DFS can be constructed in
polynomial time using a distributed algorithm.

x1

x3

x2

x4
x2

x3 x4

x1

ADOPT: Messages

value(parent → children ∪ pseudochildren, a): parent
informs its descendants that it has taken value a;

cost(child → parent, lower bound, upper bound,
context): a child informs a parent of the best cost of its
assignment; attached context to detect obsolescence;

threshold(parent → children, threshold): minimum cost
of solution in child is at least threshold;

termination(parent → children): solution found,
terminate

ADOPT: Data Structures

Each agent xj stores the following data:

1 Current context (agent view): list (xi, v) of values v of
higher-level agents xi sharing a constrain with xj

2 Bounds: for each value d and each child xk
lower bounds lb(d, xk)
upper bounds ub(d, xk)
thresholds t(d, xk)
contexts c(d, xk)

3 Threshold

Stored contexts must be active → left-hand side is satisfied in the
current context.

If a child’s xk context becomes obsolete, it is reset, i.e.,
lb(., xk), t(., xk)← 0, ub(., xk)←∞.

Local Cost Function

The local cost function δ(xi) for an agent Ai is the sum of the
values of constraints involving only higher-level neighbors in the
DFS.

Key Idea: Best First Search

OPTxj (C) = min
d∈dj

(δj(d) +
∑

xk∈children(xj)

OPTxk
(C ∪ {xj , d})

i.e. the best value for xj is a value minimizing the sum of xj ’s
local cost and the lowest cost of children under the context
extended with the assignment.

OPTxk
values are incrementally bounded using [lbk, ubk] intervals

propagated in cost messages.

Bound Computation

Lower bound computation:

Each agent evaluates for each possible value of its variable: its
local cost function with respect to the current context adding
all the compatible lower bound messages received from its
children

LBj(d) = δj(d) +
∑

xk∈children(xj)
lb(d, xk)

LBj = mind∈dj LBj(d)

Similarly for upper bound:

UBj(d) = δj(d) +
∑

xk∈children(xj)
ub(d, xk)

UBj = maxd∈dj LBj(d)

ADOPT Steps

Each time an agent receives a message:

1 process the message

the message can invalidate the current context
may take a new value minimizing its lower bound

2 Sends value messages to its children and pseudochildren

3 Sends a cost message to its parent

4 Eventually sends threshold messages

The search strategy is based on lower bounds.

Each agent adopts the value with minimal lower bound.

Lower/upper bounds only stored for the current context.

Values abandoned before proven to be suboptimal.

ADOPT Example

Threshold messages

The algorithm can re-visit previously abandoned partial solutions.

However:

Reconstructing from scratch is inefficient

Remembering solutions is expensive (in terms of memory)

Detailed cost information lost but stored at parents node in an
aggregated form.

Can be used for effective reconstruction of abandoned solutions.

Thresholds

Backtrack thresholds: used to speed up the search of previously
explored solutions.

lower bound previously determined by children
polynomial space

Send by parents to a child as allowance on solution cost:

child then heuristically re-subdivides, or allocates, the
threshold among its own children.
can be incorrect: correct for over-estimates over time as cost
feedback is (re)received from the children.

Control backtracking to efficiently search:

Key point: do not change value until LB(current value) >
threshold, i.e., there is a strong reason to believe that current
value is not the best (wait until having accumulated enough
cost messages)

Threshold Re-balancing

Parent distributes the accumulated bound among children and
corrects subdivision as feedback is received from children.

ADOPT maintain invariants:

allocation invariant: the threshold on cost for xj must equal
the local cost of choosing d plus the sum of the thresholds
allocated to xj ’s children.

child threshold invariant: The threshold allocated to child
xk by parent xj cannot be less than the lower bound or
greater than the upper bound reported by xk to xj .

Backend Threshold: Example

Approximate Algorithms

Optimality in practical applications often not achievable.

Approximate algorithms:

sacrifice optimality in favor of computational and
communication efficiency

well-suited for large-scale distributed applications

NOTE: In the following, we assume the maximization version of DCOPs.

Local Search Approaches

Start from a random assignment for all the variables

Do local moves if the new assignment improves the value (local
gain)

Local: changing the value of a small set of variables (in most case
just one)

The search stops when there is no local move that provides a
positive gain, i.e., when the process reaches a local maximum.

Local Search Approaches

We need a coordination among agents:

Local Search Approaches

Randomize to decide whether an agent is going to act.
→ DSA-1 algorithm
→ Generates a random number and executes only if it

is less than an activation probability.

Negotiate with neighbors.
→ MGM-1 algorithm
→ Agents compute and exchange possible gains and

only the with maximum (positive) gain executes the action.

FRODO: a FRamework for Open/Distributed Optimization

Framework for experimental evaluation of DCSP/DCOP
algorithms.
Input:

files defining optimization problems to be solved
configuration files defining the algorithm to be used to solve
them

Many implemented algorithms:

SynchBB, MGM and MGM-2, ADOPT, DSA, DPOP, SDPOP,

MPC-Dis(W)CSP4, O-DPOP, AFB, MB-DPOP, Max-Sum, ASO-DPOP,

P-DPOP, P2-DPOP, E[DPOP], Param-DPOP, and P
3
2 -DPOP

Supports various performance metrics:

numbers and sizes of messages sent
Non-Concurrent Constraint Checks
simulated time

https://sourceforge.net/projects/frodo2/

