
Logical reasoning and programming, task V

(January 5, 2018)

Problem

We have seen that it is easy to add new Boolean connectives, e.g. equivalence,
to our systems, because all Boolean connectives are definable there. However,
sometimes we want to add more complex connectives and operators. This
leads to so called non-classical logics. For example, we can add a unary modal
operator necessarily, usually denoted � (called box), where �p means “neces-
sarily p”. Logics containing such operators are called modal logics and were
studied already by Aristotle. They occur quite frequently in computer science,
e.g., in temporal and description logics.

Clearly, we should define the meaning of box, but we do not provide it. In-
stead of that, we shall present a tableau system for the weakest normal modal
propositional logic, called K, and define a provability in K using this system.
Your task is to implement this tableau system in Prolog. Although you are
encouraged to find some more details about K, this is not necessary for com-
pleting the task. Let us also note that the tableau system presented here differs
slightly from the tableau system presented at lectures.

We are in propositional logic and our language contains only propositional
variables (e.g., p), conjunction (e.g., p∧ q), negation (e.g., ¬p), and the operator
necessarily (e.g., �p). Formulae are then defined in the standard way.

Our tableau system for K deals with the sets of formulae. A formula ϕ is
provable in K iff we can derive that {¬ϕ} is inconsistent using the tableau sys-
tem for K. The tableau system contains rules that preserve inconsistency, hence
if a set of formulae (above line) is inconsistent, then another set of formulae
(below line) is inconsistent as well. It consists of the following rules:

⊥ (⊥)
Γ ∪ {ϕ,¬ϕ}

Γ ∪ {ϕ, ψ}
(∧)

Γ ∪ {ϕ ∧ ψ)}

Γ (⊂)
Γ ∪ ∆

Γ ∪ {ϕ}
(¬)

Γ ∪ {¬¬ϕ}

Γ ∪ {¬ϕ} Γ ∪ {¬ψ}
(∨)

Γ ∪ {¬(ϕ ∧ ψ)}

Γ ∪ {¬ϕ}
(K)

�Γ ∪ {¬�ϕ}

where Γ and ∆ are sets of formulae, ϕ and ψ are formulae, and �Γ = {�ϕ |
ϕ ∈ Γ }. The special symbol ⊥ represents inconsistency and the rule (⊥) says
that a set of formulae containing ϕ and ¬ϕ is trivially inconsistent, we also
say that (⊥) closes a branch. Only the rule (∨) contains branching — to prove
that Γ ∪ {¬(ϕ ∧ ψ)} is inconsistent we have to prove that both Γ ∪ {¬ϕ} and
Γ ∪ {¬ψ} are inconsistent.

A set of formulae is inconsistent if there is a derivation of this set using the
given rules such that all branches are closed (start with ⊥).

The following example is a proof of formula ¬(�p) ∧ ((�¬(p ∧ ¬q)) ∧
(¬�q)), which is equivalent to �p → (�(p → q) → �q) in the language
with the implication. In other words, it says “if necessarily p and necessarily
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p→ q, then necessarily q”. A basic principle which is valid in all normal modal
logics.

⊥ (⊥)
{p,¬p,¬q}

⊥ (⊥)
{p,¬¬q,¬q}

(∨)
{p,¬(p ∧ ¬q),¬q)}

(K)
{�p,�¬(p ∧ ¬q),¬�q}

(∧)
{�p, (�¬(p ∧ ¬q)) ∧ (¬�q)}

(∧)
{(�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q))}

(¬)
{¬¬((�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q)))}

The depth of such a proof, which is clearly a binary tree, is 6, because the
longest path from ⊥ to the root contains six applications of rules. Hence we
say that ¬(�p) ∧ ((�¬(p ∧ ¬q)) ∧ (¬�q)) has a proof of depth 6.

For further details about tableau systems for modal logics see, e.g., this text.

Program

The following representation of formulae in Prolog is used

Logic Prolog
p p
¬p -(p)

p ∧ q (p,q)
�p box(p)

and it naturally extends to all formulae. Propositional variables are atoms in
Prolog, a conjunctions is a pair, a negation is expressed by a unary minus, and
a box operator is expressed by a unary function box.

For example, ¬¬((�p)∧ ((�¬(p∧¬q))∧ (¬�q))) is represented in Prolog
by -(-((box(p),(box(-((p,-(q)))),-(box(q)))))).

You are supposed to upload a program modaltap.pl containing a binary
predicate prove, where the first argument is an input formula and the second
argument is a number. Hence we have prove(-Formula, -Depth) and it suc-
ceeds iff Formula has a proof of depth at most Depth.

For example, prove(-((box(p),(box(-((p,-(q)))),-(box(q))))), 6).
succeeds and it also succeeds for the second argument being 7, 8, . . . .

Tips

It is wise to represent sets of formulae using lists. In this case you can use the
predicate select/3, see help for further details.

There is no need to optimize your program for efficiency, your task is to
write a simple program. A strightforward implementation of the presented
tableau system should work just fine.
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http://rsise.anu.edu.au/~rpg/Publications/Handbook-Tableau-Methods/TR-ARP-15-95.ps.gz
http://www.swi-prolog.org/pldoc/man?predicate=select/3

