
Logical reasoning and programming, task III

(December 11, 2017)

Problem

Your task is to modify the following leantap Prolog program in such a way
that it is able to produce a tableau proof tree (at the last additional 6th argument
of original predicate prove/5) that exactly correspond to the original leantap
computation.

% prove(+Fml,+UnExp,+Lits,+FreeV,+VarLim)

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) -> (unify_with_occurs_check(Neg,L)

; prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Tableau Proof Format

The tableau proof tree format is a Prolog repesentation of Semantic Tableau
tree. Every node in the tree has its unique identifier that can be Prolog integer
or Prolog atom. Every tableau rule can add one (in case of add_rule, all_rule,
and closed_by) or two (in case of or_rule) leaves to the current working node.
Every node has the following format:

node(identifier,corresponding NNF formula,used rule,list of its sub-nodes/sons)

where used rule can be a term add_rule, or_rule, all_rule, or closed_by
with arguments that contain identifiers as references to previous nodes that
are needed by this rule to infer the current node. The root of the Semantic
Tablueau tree has a node with top identifier. Our tableau proof tree does not
have this node but you can refer top as identifier. The corresponding NNF for-
mula, that is inferred by closed_by rule, is false.

1

The tableau proof tree starts with a list of sub-nodes of top. All substitutions,
that are needed, are already applied on the resulting tableau proof tree.

Program

You are supposed to upload a program leantap2.pl, in an archive, containing
a predicate prove/6, where the last argument is the output tableau proof and
the other arguments correspond one to one to the original leantap implemen-
tation. Of course, you can use additional predicates in your solution.

Example 1

?- prove((fact,-fact), [], [], [], 0, Proof).
Proof = [node(1, fact, and_rule(top),

[node(2, -fact, and_rule(top),
[node(3, false, closed_by(2, 1), [])])

])
]

top

and_rule(top)

0: fact

and_rule(top)

1: -fact

closed_by(1,0)

2: false

2

Example 2

?- prove((all(X,p(X)) , (-p(c);-p(d))), [], [], [], 3, Proof).
Proof = [node(0, all(B, p(B)), and_rule(top), [node(2, p(c), all_rule(A), [

node(3, (-p(c);-p(d)), and_rule(top), [node(4, -p(c), or_rule(D), [
node(5, false, closed_by(E, C), [])]), node(6, -p(d), or_rule(D), [
node(7, p(d), all_rule(A), [node(8, false, closed_by(H, G), [])
])])])])])]

top

and_rule(top)

0: all(B, p(B))

all_rule(0)

2: p(c)

and_rule(top)

3: -p(c);-p(d)

or_rule(3)

4: -p(c) 6: -p(d)

closed_by(4,2)

5: false

all_rule(0)

7: p(d)

closed_by(7,6)

8: false

3

