Logical reasoning and programming, task 11
(November 13, 2017)

Problem

Your task is to write a program in Prolog that given a propositional formula ¢
produces an equisatisfiable formula ¢’ in CNF using the Tseytin transforma-
tion presented at the first lectur Hence the size of ¢’ is linear in the size of ¢.
A part of your task is to find out how to deal with equivalences.

Program

You are supposed to upload a program cnf.pl containing a binary predi-
cate cnf, where the first argument is the input formula ¢ and the second ar-
gument is the output formula ¢’. Hence using the standard notation that
emphasizes the input/output behavior of predicates this can be expressed as
cnf (+InputFormula, -OutputFormula).

Usefull predicates

Note that you can use a built-in predicate var for testing whether a term is a
variable or not. Hence var (X) succeeds, if X is a variable, and var (X => Y)
fails. AlsoZ = Y => Y, var(Z) fails.

Input

As an input you get a term that describes a propositional formula. Proposi-
tional variables are expressed as variables in Prolog and the allowed connec-
tives are negation (~), disjunction (1), conjunction (&), implication (=>), and
equivalence (<=>). These connectives are expressed as operators in Prolog,
hence add the following coddﬂ at the beginning of your program:

:-op(450,fy,~). 7% Negation

:—(system_mode (true) ,op(502,xfy,’|’) ,system_mode(false)). % Disjunction
:-op(503,xfy,&). % Conjunction

:-op(504,xfx,=>). % Implication

:-op(505,xfx,<=>). ¥ Equivalence

We express (p Aq) —ras (P & Q) => R,orevenP & Q => R.

INote that if you follow the approach presented at the lecture, then there is no need to worry
about the following. In principle, you could produce an equisatisfiable formula ¢’ by checking
whether ¢ is satisfiable or not and then produce a trivially satisfiable or unsatisfiable formula,
respectively. However, you should realize that one of the goals of this transformation is to have
a reasonable input for a solver. Moreover, the formula obtained by the Tseytin transformation
has some additional properties that will be tested. For example, for any valuation v holds that if
v |= ¢/, then v |= ¢. The opposite direction is a bit tricky. For any valuation v, if v |= ¢, then there
is a valuation v’ such that v’ |= ¢’ and v(p) = ¢'(p) for any propositional variable p occurring in
¢. In other words, we have to change the valuation of new variables in ¢’ as needed.

2The operator used for disjunction has a meaning in Prolog and hence a special treatment is
required.

Output

A formula in CNF is a conjunction of disjunctions (clauses) of literals. Our
representation of a formula in CNF is a list (conjunction) of lists (disjunctions).
A clause is represented by a list of literals and a conjunction of clauses is a
list of their representations (lists). For example P & (Q | ~R) is expressed as
Lfel, [Q, ~RII.

Note that the empty conjuction is expressed as [] and the empty clause as
L.

Example

Note that your output can be very different and do not take the following ex-
ample as something you have to imitate. It heavily depends on the choice of
rules for transformations, order, simplifications etc.

?- cnf(P => (Q => R), CNF).
CNF = [[_732], [~P, _750, ~_732], [P, _732], [~_750, _732],
[(~Q, R, ~_750], [Q, _750], [~R, _750]].

