
Logical reasoning and programming, lab session VI
(November 6, 2017)

VI.1 An interesting built-in predicate is repeat/0. It always succeeds and
when reached by backtracking it creates a new choice point. How would
you write this predicate in Prolog?
It is useful for failure driven loops like

printfile(File):-
see(File),
repeat,
read(Term),
(Term == end_of_file

-> !
;
print(Term),nl,
fail

),
seen.

VI.2 Compare the output of ?-findall(_,fail,L). and ?-bagof(_,fail,L).

VI.3 Use the standard definition of Fibonacci numbers, 𝐹1 = 1, 𝐹2 = 1, and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, for 𝑛 > 2, and write a straightforward (and highly
inefficient) recursive program that computes them, e.g., use a predicate
fib(+N,-FN).
One trick how to improve the program is the caching of results, try that
using asserta/2. Do not forget to add something like

:-dynamic fib/2. % your predicate has to be dynamic
:-retractall(fib(_,_)). % remove fib/2 from the database

at the beginning of your program. Check also the behavior of your program
after several runs without using retractall/2. Moreover, check your
database using ?-listing(fib).

However, there is still a much better way how to compute Fibonacci num-
bers using accumulators. Do that and do not hesitate to use as many new
variables as needed.

VI.4 Try to use our vanilla meta-interpreter

prove(true):-!.
prove((A, B)):-!,

prove(A),
prove(B).

prove(A):-
clause(A,B),
prove(B).

1

on some programs in pure Prolog. What happens if we use it on itself?
Try for example ?-prove(prove(true)).

The problem is caused by the use of built-in predicates like ! and clause/2.
Propose a workaround to these problems.

VI.5 Our definition of a difference list, defined as a pair of lists, says nothing
about the meaning of [a,b]-[c,d]. However, if your try to use append
defined using difference lists

append_dl(XPlus-XMinus, XMinus-YMinus, XPlus-YMinus).

you still get something. Try for example ?-append_dl(X, Y, [a,b]-[c,d]).
and ?-append_dl([a,b]-[c,d], Y, Z).

VI.6 First, write predicate reverse(L1, L2), where the list L2 is obtained
from the list L1 by reversing the order of elements, using an accumulator.
Hence you will obtain something like reverse_acc/3.
Once you have it, try to obtain a binary predicate reverse_dl, where you
use a difference list instead of an accumulator1.

(Hint: Removing a head from L1 can be similarly described by adding it
at the beginning of the minus part of L2.)

VI.7 Write a grammar (DCG) that accepts the language 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}.
The start symbol is, e.g., s. Hence ?-phrase(s, L) should produce all
possible words in 𝐿.

VI.8 Write a grammar (DCG) that accepts the language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}.
The start symbol is, e.g., s. Hence ?-phrase(s, L) should produce all
possible words in 𝐿.
Change your grammar in such a way that you can get the pairs 𝑛 and
𝑎𝑛𝑏𝑛𝑐𝑛:

?- phrase(s(N),L).
N = 0,
L = [] ;
N = 1,
L = [a, b, c] ;
N = 2,
L = [a, a, b, b, c, c]

(You can also recall your knowledge of the pumping lemma for context-free
languages and show that 𝐿 is not a context-free language.)

1Note that a difference list is represented by two lists and hence there are still three lists
involved.

2

