## Logical reasoning and programming, lab session IV

(October 9, 2017)
IV. 1 Formalize the following scenario in Prolog:

Basil owns Fawlty Towers. Basil and Sybil are married. Polly and Manuel are employees at Fawlty Towers. Smith and Jones are guests at Fawlty Towers. All hotel-owners and their spouses serve all guests at the hotel. All employees at a hotel serve all guests at the hotel. All employees dislike the owner of the workplace. Basil dislikes Manuel.

Then ask the queries "Who serves who?" and "Who dislikes who?".
IV. 2 We can represent natural numbers as numerals using 0 and the successor function s , where $\mathrm{s}(0)$ is $1, \mathrm{~s}(\mathrm{~s}(0))$ is 2 etc.
Assume the predicate plus/3 from the lecture

```
plus(0,X,X).
plus(s(X),Y,s(Z)):-plus(X,Y,Z).
```

and a variant plus2/3 (using an accumulator)

```
plus2(0,X,X).
plus2(s(X),Y,Z):-plus2(X,s(Y),Z).
```

Test their behavior on some inputs. Do they produce always the same results? How would you define predicate minus/3 from them? How many variants are there?
(Hint: try ?-plus(X,Y,s(s(0))). and ?-plus2(X,Y,s(s(0))).)
IV. 3 Give the Herbrand universe and Herbrand base of the following program:
$p(f(X)):-q(X, g(X))$.
$q(a, g(b))$.
$q(b, g(b))$.
Give the least Herbrand model (minimal model) of the program.
IV. 4 Consider the Herbrand universe consisting of constants $a, b, c$ and $d$. Let $\mathcal{H}$ be the Herbrand interpretation

$$
\{p(a), p(b), q(a), q(b), q(c), q(d)\}
$$

Which of the following formulae are true in $\mathcal{H}$ ?
(a) $\forall X p(X)$,
(b) $\forall X q(X)$,
(c) $\exists X(q(X) \wedge p(X))$,
(d) $\forall X(q(X) \rightarrow p(X))$,
(e) $\forall X(p(X) \rightarrow q(X))$.
IV. 5 Recall that clauses with at most one positive literal, say $A \leftarrow B_{1}, \ldots, B_{n}$, are called definite. A program is definite if it contains only definite clauses. Prove the model intersection property: Let $M$ be a non-empty family of Herbrand models of a definite program $P$. Then $\bigcap M$ is also a Herbrand model of $P$.
(Hint: Take two Herbrand models of $P$, say $H_{1}$ and $H_{2}$, and assume that $H_{1} \cap H_{2}$ is not a Herbrand model of $P$. Hence it fails for a definite clause in $P$. Is that possible? Use the fact that $H_{1}$ and $H_{2}$ are both models of this clause!)
IV. 6 The model intersection property from the previous exercise does not hold for indefinite clauses. Why?

