
Logical reasoning and programming
SAT solving—resolution, DPLL, and CDCL

Karel Chvalovský

CIIRC CTU

A reminder of terminology
We are in propositional logic. A literal 𝑙 is a propositional variable
𝑝, also called atom, or a negation of propositional variable ¬𝑝. In
this context we write 𝑝 instead of ¬𝑝. Moreover, to simplify our
notation, we define also 𝑙. If a literal 𝑙 is 𝑝, then 𝑙 is 𝑝. A clause is
any disjunction of finitely many literals. An important special case
is the empty clause, we write 2.

A formula 𝜙 is in conjunctive normal form (CNF) if 𝜙 is a
conjunction of clauses.

A formula 𝜙 is satisfiable, 𝜙 ∈ SAT, if there is a valuation 𝑣 s.t.
𝑣 |= 𝜙, that is 𝑣(𝜙) = 1.

We know that for any formula 𝜙 we can obtain a formula 𝜙′ in
CNF, which is not much longer than 𝜙, and 𝜙 and 𝜙′ are
equisatisfiable—either both are satisfiable, or both are unsatisfiable.

Recall two special cases. The empty clause 2 (empty disjunction)
is unsatisfiable. The empty CNF (empty conjunction) is satisfiable.

1 / 30

SAT problem

Given a formula 𝜙 in CNF decide whether 𝜙 ∈ SAT.

Why is satisfiability important? Among other things it is possible
to express other notions through it.

For any formula 𝜙 we have

|= 𝜙 iff ¬𝜙 is a contradiction iff ¬𝜙 /∈ SAT.

Moreover, for any formula 𝜙 and a finite set of formulae Γ we have

Γ |= 𝜙 iff
⋀︁

Γ ∧ ¬𝜙 is a contradiction iff
⋀︁

Γ ∧ ¬𝜙 /∈ SAT.

Example
𝑝, 𝑝→ 𝑞, 𝑞 → 𝑟 |= 𝑟 iff 𝑝 ∧ (𝑝→ 𝑞) ∧ (𝑞 → 𝑟) ∧ (¬𝑟) /∈ SAT.

2 / 30

SAT solving applications

SAT solving is one of success stories in computer science. We are
able to solve industrial problems containing millions of variables.

It is used in
I formal verification — chip makers check correctness of their

designs
I security
I bioinformatics — mutations in DNA
I train safety
I planning and scheduling
I automated theorem proving

3 / 30

CNF as a set of sets

We know that conjunctions and disjunctions are associative,
commutative, and idempotent. Therefore a clause can be seen as a
set of literals and a formula in CNF as a set of clauses.

Hence from now on we freely use

𝜙 = {{𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟, 𝑠}, {𝑠, 𝑡}}

instead of
(𝑝 ∨ 𝑞) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨ 𝑠) ∧ (𝑠 ∨ 𝑡).

Note that 𝜙 is also a representation of

(𝑡 ∨ 𝑠 ∨ 𝑡) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨ 𝑞) ∧ (𝑟 ∨ 𝑠) ∧ (𝑝 ∨ 𝑞).

4 / 30

Resolution rule — example

Assume we want to satisfy two clauses that contain contradicting
literals simultaneously

𝑞 ∨ 𝑝 𝑝 ∨ 𝑟
𝑞 ∨ 𝑟

If 𝑣 |= (𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑟), then clearly 𝑣 |= 𝑞 ∨ 𝑟.

5 / 30

Resolution rule
Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑝 be a propositional
variable.

{𝑙1, . . . , 𝑙𝑚, 𝑝} {𝑝, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}

The clause {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} produced by the resolution
rule is called the resolvent of the two input clauses. We call 𝑝 and
𝑝 a complementary pair. We also say that it is a 𝑝-resolvent to
emphasize the complementary pair.

Theorem (correctness)
For any valuation 𝑣, if 𝑣 |= {𝑙1, . . . , 𝑙𝑚, 𝑝} and
𝑣 |= {𝑝, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}, then 𝑣 |= {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}.

Hence the resolution rule preserves satisfiability.

6 / 30

Resolution calculus

Resolution calculus has no axioms and the only deduction rule is
the resolution rule.

Resolution proof
A (resolution) proof of clause 𝑐 from clauses 𝑐1, . . . , 𝑐𝑛 is a finite
sequence of clauses 𝑑1, . . . , 𝑑𝑚 such that

I every 𝑑𝑖 is among 𝑐1, . . . , 𝑐𝑛 or is derived by the resolution
rule from input clauses 𝑑𝑗 and 𝑑𝑘, for 1 ≤ 𝑗 < 𝑘 < 𝑖 ≤ 𝑚,

I 𝑐 = 𝑑𝑚.

We say that a clause 𝑐 is provable (derivable) from a set of clauses
{𝑐1, . . . , 𝑐𝑛}, we write {𝑐1, . . . , 𝑐𝑛} ⊢ 𝑐, if there is a proof of 𝑐 from
𝑐1, . . . , 𝑐𝑛.

7 / 30

Resolution proof

Example

{𝑝} {𝑝, 𝑞}
{𝑞} {𝑞, 𝑟}

{𝑟} {𝑟}
2

is a proof of {{𝑝}, {𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟}} ⊢ 2. Strictly speaking the
presented derivation is not a sequence, but it is easy to produce a
sequence from it.

8 / 30

Completeness of resolution calculus

It is not true that we can derive every valid formula in the
resolution calculus, e.g., from the empty set we derive nothing.
However, it is so called refutationally complete.

Theorem (completeness)
Let 𝜙 be a set of clauses. If 𝜙 is unsatisfiable, then 𝜙 ⊢ 2.

Note that from the correctness theorem we already know.

Theorem
Let 𝜙 be a set of clauses. If 𝜙 ⊢ 2, then 𝜙 is unsatisfiable.

9 / 30

Deciding SAT using resolution

If we have a formula 𝜙 in CNF, a finite set of clauses, then we can
clearly derive only finitely many clauses from it, say
𝜓 = {𝑐 : 𝜙 ⊢ 𝑐}.

Note that if 𝜓 ⊢ 𝑐, then 𝑐 ∈ 𝜓. We call such a set of clauses
saturated—it is closed under the resolution rule. This gives us a
decision procedure for SAT. Either we produce the empty clause
and hence 𝜙 /∈ SAT, or we produce a saturated set of clauses and
hence 𝜙 ∈ SAT.

Example
Let 𝜙 = {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}}. A set of clauses
{{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}, {𝑞, 𝑟}, {𝑝, 𝑠}, {𝑟, 𝑠}} is saturated. Hence
𝜙 ∈ SAT.

10 / 30

Ordered resolution

Assume a formula {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}} and two possible
derivations that differ only in the order of performed steps

{𝑝, 𝑞} {𝑝, 𝑟}
{𝑞, 𝑟} {𝑞, 𝑠}

{𝑟, 𝑠}

{𝑝, 𝑞} {𝑞, 𝑠}
{𝑝, 𝑠} {𝑝, 𝑟}

{𝑟, 𝑠}

Is it necessary to try all such possible orderings? No, we can use an
ordered resolution. We can always impose an order on variables
and resolve using this order. Say 𝑝 < 𝑞, meaning all 𝑝-resolvents
must precede all 𝑞-resolvents.

Why? We try to produce the empty clause, it does not matter in
which order we eliminate literals to achieve that goal.

11 / 30

Davis–Putnam algorithm

It was originally developed for first-order logic.

We have a set of clauses 𝜙. We choose a variable 𝑝 such that both
𝑝 and 𝑝 occur in 𝜙 and eliminate it—we produce all possible
𝑝-resolvents and add them to 𝜙 and then we remove all clauses in
𝜙 that contain 𝑝 or 𝑝. This operation preserves satisfiability.

Example
From {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}} we obtain {{𝑞, 𝑟}, {𝑞, 𝑠}} by
eliminating 𝑝 and then we obtain {𝑟, 𝑠} by eliminating 𝑞. We
cannot proceed and hence the original formula is satisfiable.

We can use many tricks to simplify searching, but in general the
size of space needed to store clauses can grow exponentially.

12 / 30

Some properties of resolution
Subsumption
A clause 𝑐1 is said to (syntactically) subsume a clause 𝑐2 if 𝑐1 ⊆ 𝑐2.

If 𝑐1, 𝑐2 ∈ 𝜙 and 𝑐1 ⊆ 𝑐2, then 𝜙 ∈ SAT iff 𝜙 ∖ 𝑐2 ∈ SAT. Moreover,
this can shorten a derivation of the empty clause.

Example
From {{𝑝}, {𝑝, 𝑟}, {𝑝, 𝑞}, {𝑟, 𝑞}} we obtain {{𝑝}, {𝑝, 𝑞}, {𝑟, 𝑞}}
that is equisatisfiable.

Multiple resolvents
If it is possible to obtain more different resolvents from two clauses
𝑐1 and 𝑐2, then all these resolvents are tautologies and hence
always satisfiable.

Example
{𝑝, 𝑞} {𝑝, 𝑞}

{𝑞, 𝑞}
{𝑝, 𝑞} {𝑝, 𝑞}

{𝑝, 𝑝}
13 / 30

Conditioning — simplifications

To avoid space problems of Davis–Putnam algorithm we use a
different approach. We try to produce a satisfying valuation by
assigning values to variables and we backtrack if necessary.

We select a literal 𝑙 and replace it by true (⊤). Hence 𝑙 is replaced
by false (⊥). It can lead to many simplifications of our formula.

Require: A set of clauses 𝜙, a literal 𝑙
function Simplify(𝜙, 𝑙)

𝜙′ ← 𝜙
for 𝑐 ∈ 𝜙′ do

if 𝑙 ∈ 𝑐 then remove 𝑐 from 𝜙′ ◁ satisfied clause
else if 𝑙 ∈ 𝑐 then remove 𝑙 from 𝑐 ◁ unsatisfied literal

return 𝜙′

14 / 30

Chronological backtracking algorithm

Using the previous simplification function, we can chronologically
try to create a satisfying valuation.

Require: A set of clauses 𝜙
function IsSat(𝜙)

if 𝜙 = ∅ then return true ◁ no clause
else if 2 ∈ 𝜙 then return false ◁ empty clause
else

𝑙← select a literal occurring in 𝜙
if IsSAT(Simplify(𝜙, 𝑙)) then return true
else if IsSAT(Simplify(𝜙, 𝑙)) then return true
else return false

15 / 30

DPLL algorithm
The name stands for Davis, (Putnam), Logemann, and Loveland.

We improve our backtracking algorithm by following two ideas:

Unit propagation
If a clause contains only a single literal 𝑙, then it is forced that 𝑙
has to be true.

Example
For {{𝑝}, {𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟}} we obtain unsatisfiability immediately
after unit propagations and simplifications.

Note that unit propagation is a very powerful technique.

Pure literal elimination
A literal 𝑙 is pure, if 𝑙 does not occur in the formula. Hence we can
satisfy all clauses containing 𝑙 by assigning true to 𝑙.

16 / 30

DPLL algorithm

Require: A set of clauses 𝜙
function DPLL(𝜙)

while 𝜙 contains a unit clause {𝑙} do ◁ unit propagation
delete clauses containing 𝑙 from 𝜙 ◁ unit subsumption
delete 𝑙 from all clauses in 𝜙 ◁ unit resolution

if 2 ∈ 𝜙 then return false ◁ empty clause
while 𝜙 contains a pure literal 𝑙 do

delete clauses containing 𝑙 from 𝜙

if 𝜙 = ∅ then return true ◁ no clause
else

𝑙← select a literal occurring in 𝜙 ◁ choice of literal
if DPLL(𝜙 ∪ {{𝑙}}) then return true
else if DPLL(𝜙 ∪ {{𝑙}}) then return true
else return false

17 / 30

DPLL — data structures

In real implementations we use trail — we keep whole set and
construct a partial assignment during a computation. An efficient
checking for unit propagations is crucial.

Watched literals
Instead of checking whole clauses all the time we select two
distinct literals, called watched literals, in each clause. We also
remember in which clauses a literal is selected. If we assign a value
to a literal 𝑙, then we check only clauses where 𝑙 is a watched
literal. In these clauses we try to select another literal as a watched
literal. If that is no longer possible, then we have a unit clause.

It has nice properties during backtracking, because there is no need
to update current watched literals.

For details see, e.g., Knuth 2015; Biere et al. 2009.

18 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

. . .

𝑟

𝑞

. . .

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them.

19 / 30

Implication graph — analyzing conflicts
Red vertices are decision points and blue vertices are cased by unit
propagations. Red edges show the direction of decisions and blue
edges the reasons for unit propagations.

𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 7
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Hence (𝑝 ∧ 𝑠)→ ⊥ and hence ⊤ → (𝑝 ∨ 𝑠) (={𝑝, 𝑠}). We can
learn this clause and add it to our set of clauses. This avoids
visiting the same conflict in a different branch.

20 / 30

Implication graph — analyzing conflicts

We can also analyze the second conflict now.

𝑝

𝑠

𝑢 7
𝑐4

𝑐4

𝑐6

𝑐6

𝑐6

𝑐8

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}
𝑐8 = {𝑝, 𝑠}

Hence we learn 𝑐9 = {𝑝}.

21 / 30

Implication graph — various cuts
It was possible to learn a different clause.

𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 7
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

We usually prefer to learn {𝑝, 𝑡} instead of {𝑝, 𝑠}. Because 𝑡 is so
called dominator, all paths from 𝑠 to the conflict go through 𝑡.

We call such dominators unique implication points (UIP) and a
popular strategy is to learn the first UIP (the one closest to the
conflict).

22 / 30

Conflict-Driven Clause Learning (CDCL)

It is DPLL with non-chronological backtracking, called back
jumping, and clause learning.

Restarts
It is useful to restart a CDCL solver from time to time. We forget
all assignments but keep the learned clauses.

Delete learned clauses
It is necessary to delete some learned clauses to avoid space
problems and hence we keep only the most useful clauses.

Preprocessing
We usually try to minimize the input problem using subsumptions
and variable eliminations.

23 / 30

Decision heuristics

Many approaches, but it has to be fast.

Focus heuristics
In CDCL we try to find small unsatisfiable subsets and hence prefer
variables involved in recent conflicts.
Modern solvers usually use a variant of VSIDS (Variable State
Independent Decaying Sum). We start with the number of
occurrences of a variable in all clauses. If a conflict clause 𝑐 is
detected, then the score of all variables in 𝑐 is increased. Moreover,
we periodically divide our scores by a constant.

Global heuristics
Good for hard problems. We look-ahead on a literal 𝑙. It means
that we assume 𝑙, then we apply unit propagations and check
clauses that are shortened by this assignment, but not completely
satisfied. We prefer literals that produce shorter clauses.

24 / 30

Parallel solving

Cube and conquere
We generate many partial assignments, e.g., by a breath-first
search with a limited maximal depth, and try to solve them.

Portfolio approach
We run multiple solvers (usually the same one) with different
settings on the same formula. We share clauses among solvers.
The main problem is how to diversify and clause sharing — which
clauses, how many, when, . . .

It works very well on large problems that are easy to solve.

25 / 30

Parallel solving

Cube and conquere
We generate many partial assignments, e.g., by a breath-first
search with a limited maximal depth, and try to solve them.

Portfolio approach
We run multiple solvers (usually the same one) with different
settings on the same formula. We share clauses among solvers.
The main problem is how to diversify and clause sharing — which
clauses, how many, when, . . .

It works very well on large problems that are easy to solve.

26 / 30

Probabilistic algorithms — stochastic local search
We start with a random complete valuation and try to minimize
the number of unsatisfied clauses by flipping values.
It is an open problem how to use these techniques for showing
unsatisfiability.
GSAT

function GSAT(𝜙)
for 𝑖 ∈ (1,𝑀𝐴𝑋𝐼𝑇𝐸𝑅𝑆) do

𝑣 ← a random valuation on 𝜙
for 𝑗 ∈ (1,𝑀𝐴𝑋𝐹𝐿𝐼𝑃𝑆) do

if 𝑣 |= 𝜙 then return 𝑣
else minimize #unsat clauses by flipping a variable

return None

Walksat
Select randomly a unsatisfied clause 𝑐. If by flipping a variable 𝑥
occuring in 𝑐 no new unsatisfied clause emerges, then flip 𝑥.
Otherwise with a probability 𝑝 flip a variable 𝑥 in 𝑐 and with a
probability (1− 𝑝) perform a GSAT step.

27 / 30

How to select a SAT solver?

Try different solvers, they use the same input format and hence it
is easy to experiment.

MiniSat is free, fast, and very popular implementation in C. It won
all three industrial categories in the SAT Competetion 2005. A
new version is called MiniSat 2, but it is not state of the art. A
good choice if you want to use a SAT solver in your software.

Check results of SAT Competition 2017 and from previous years.

28 / 30

http://minisat.se/
http://satcompetition.org/https://baldur.iti.kit.edu/sat-competition-2017/

DIMACS format
The standard input format for SAT solvers.

Variables are enumerated 1, 2, A literal 𝑥𝑖 is represented by 𝑖
and 𝑥𝑖 by −𝑖. A clause is a list of non-zero integers separated by
spaces, tabs, or newlines. The end of a clause is represented by
zero. The order of literals and clauses is irrelevant.

c start with comments
c
p cnf 5 3 #variables #clauses
1 -5 4 0
-1 5 3 4 0
-3 -4 0

encodes

(𝑥1 ∨ 𝑥5 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥5 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥3 ∨ 𝑥4).

29 / 30

Certifying unsatisfiability

It is easy to convince someone that a formula is satisfiable by
showing an assignment. To certificate that it is unsatisfiable is not
so easy. It can be exponentially long and usually it is a resolution
proof.

A standard format currently used is called DRAT (Delete
Resolution Asymmetric Tautologies).

30 / 30

Bibliography I

Biere, Armin et al., eds. (2009). Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS
Press, p. 980. isbn: 978-1-58603-929-5.

Knuth, Donald E. (2015). The Art of Computer Programming,
Volume 4, Fascicle 6: Satisfiability. 1st. Addison-Wesley
Professional. isbn: 978-0-13-439760-3.

