Ji Vyskodil
2017



" ANL LOOp

The first use in provers developed at ANL (Argonne
National Laboratory) where the most well-known prover is
Otter by W. McCune.

We assume that the input conjecture have to be part of
the resulting refutation proof.

ANL Loop guarantees the exploration of all needed
combinations of clauses for complete resolution.

ANL Loop tries to avoid redundant inferences as much as
possible.

It is independent of the chosen clause selection strategy.

logical reasoning and programming



" ANL LOOp

/I Clauses in list SOS (set of support) are not available to make inferences;
SOS := input clause; // they are waiting to participate in the search.

usable := empty set; // This list contains clauses that are available to make inferences.

while (SOS is not empty and no refutation has been found)

{

Let given clause be the “best” clause in SOS;
Move given clause from SOS to usable;

Infer and process new clauses using the inference rules in effect
where:

each new clause must have:
= the given clause as one of its parents and

= members of usable as its other parents;
new clauses that pass the retention tests are appended to SOS;

logical reasoning and programming



vstupni klauzule

" ISESC1ause Selection Strategies

DFS (Depth-First Search):
Choosing the last/newest resolvent in SOS.
This is not complete (endless looping possible).
Does not guarantee the shortest proof.

BFS (Breadth-First Search):
Choosing the first/oldest resolvent in SOS.
It is complete.
It will find the shortest proof if exists.
“ply-by-ply search”

Best First/Clause Search:
We will choose “the best” clause in SOS.

If this selection does not guarantee completeness
then we can combine this strategy with BFS
(e.g. every 10t clause is selected by BFS)

logical reasoning and programming



S ANL Coop with Subsumption

SOS := input clause;

usable := empty set;

while (SOS is not empty and no refutation has been found)

{

Let given_clause be the “best” clause in SOS;
SOS := SOS \ given_clause;
If usable E {given clause} or SOS E {given clause} then continue;
usable :={ D € usable | given clause £ D } U {given clause};
Infer and process new clauses using the inference rules in effect where:
each new clause Q must have:
= the given clause as one of its parents and
= members of usable as its other parents;

= usable & {Q}
new clauses that pass the retention tests are appended to SOS;

logical reasoning and programming



" A
References

William McCune. OTTER 3.3 Reference Manual. CoRR ¢s.5C/0310056 (2003)

logical reasoning and programming


http://dblp.uni-trier.de/db/journals/corr/corr0310.html#cs-SC-0310056

