
ANL Loop

Jiří Vyskočil

2017

2 / 6logical reasoning and programming

ANL Loop

 The first use in provers developed at ANL (Argonne
National Laboratory) where the most well-known prover is
Otter by W. McCune.

 We assume that the input conjecture have to be part of
the resulting refutation proof.

 ANL Loop guarantees the exploration of all needed
combinations of clauses for complete resolution.

 ANL Loop tries to avoid redundant inferences as much as
possible.

 It is independent of the chosen clause selection strategy.

3 / 6logical reasoning and programming

ANL Loop

SOS := input clause;

usable := empty set;

while (SOS is not empty and no refutation has been found)

{

1. Let given_clause be the ‘‘best’’ clause in SOS;

2. Move given_clause from SOS to usable;

3. Infer and process new clauses using the inference rules in effect

where:

 each new clause must have:

 the given_clause as one of its parents and

 members of usable as its other parents;

4. new clauses that pass the retention tests are appended to SOS;

}

// Clauses in list SOS (set of support) are not available to make inferences;

// they are waiting to participate in the search.

// This list contains clauses that are available to make inferences.

4 / 6logical reasoning and programming

Clause Selection Strategies

 DFS (Depth-First Search):

 Choosing the last/newest resolvent in SOS.

 This is not complete (endless looping possible).

 Does not guarantee the shortest proof.

 BFS (Breadth-First Search):

 Choosing the first/oldest resolvent in SOS.

 It is complete.

 It will find the shortest proof if exists.

 “ply-by-ply search”

 Best First/Clause Search:

 We will choose “the best” clause in SOS.

 If this selection does not guarantee completeness

then we can combine this strategy with BFS

(e.g. every 10th clause is selected by BFS)

vstupní klauzule

5 / 6logical reasoning and programming

ANL Loop with Subsumption

SOS := input clause;

usable := empty set;

while (SOS is not empty and no refutation has been found)

{
1. Let given_clause be the ‘‘best’’ clause in SOS;

2. SOS := SOS \ given_clause;

If usable ⊑ {given_clause} or SOS ⊑ {given_clause} then continue;

usable := { D ∈ usable | given_clause ⋢ D } ⋃ {given_clause};

3. Infer and process new clauses using the inference rules in effect where:

 each new clause Q must have:

 the given_clause as one of its parents and

 members of usable as its other parents;

 usable ⋢ {Q}

4. new clauses that pass the retention tests are appended to SOS;

}

6 / 6logical reasoning and programming

References

 William McCune. OTTER 3.3 Reference Manual. CoRR cs.SC/0310056 (2003)

http://dblp.uni-trier.de/db/journals/corr/corr0310.html#cs-SC-0310056

