
ANL Loop

Jiří Vyskočil

2017

2 / 6logical reasoning and programming

ANL Loop

 The first use in provers developed at ANL (Argonne
National Laboratory) where the most well-known prover is
Otter by W. McCune.

 We assume that the input conjecture have to be part of
the resulting refutation proof.

 ANL Loop guarantees the exploration of all needed
combinations of clauses for complete resolution.

 ANL Loop tries to avoid redundant inferences as much as
possible.

 It is independent of the chosen clause selection strategy.

3 / 6logical reasoning and programming

ANL Loop

SOS := input clause;

usable := empty set;

while (SOS is not empty and no refutation has been found)

{

1. Let given_clause be the ‘‘best’’ clause in SOS;

2. Move given_clause from SOS to usable;

3. Infer and process new clauses using the inference rules in effect

where:

 each new clause must have:

 the given_clause as one of its parents and

 members of usable as its other parents;

4. new clauses that pass the retention tests are appended to SOS;

}

// Clauses in list SOS (set of support) are not available to make inferences;

// they are waiting to participate in the search.

// This list contains clauses that are available to make inferences.

4 / 6logical reasoning and programming

Clause Selection Strategies

 DFS (Depth-First Search):

 Choosing the last/newest resolvent in SOS.

 This is not complete (endless looping possible).

 Does not guarantee the shortest proof.

 BFS (Breadth-First Search):

 Choosing the first/oldest resolvent in SOS.

 It is complete.

 It will find the shortest proof if exists.

 “ply-by-ply search”

 Best First/Clause Search:

 We will choose “the best” clause in SOS.

 If this selection does not guarantee completeness

then we can combine this strategy with BFS

(e.g. every 10th clause is selected by BFS)

vstupní klauzule

5 / 6logical reasoning and programming

ANL Loop with Subsumption

SOS := input clause;

usable := empty set;

while (SOS is not empty and no refutation has been found)

{
1. Let given_clause be the ‘‘best’’ clause in SOS;

2. SOS := SOS \ given_clause;

If usable ⊑ {given_clause} or SOS ⊑ {given_clause} then continue;

usable := { D ∈ usable | given_clause ⋢ D } ⋃ {given_clause};

3. Infer and process new clauses using the inference rules in effect where:

 each new clause Q must have:

 the given_clause as one of its parents and

 members of usable as its other parents;

 usable ⋢ {Q}

4. new clauses that pass the retention tests are appended to SOS;

}

6 / 6logical reasoning and programming

References

 William McCune. OTTER 3.3 Reference Manual. CoRR cs.SC/0310056 (2003)

http://dblp.uni-trier.de/db/journals/corr/corr0310.html#cs-SC-0310056

