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Czech Technical University in Prague

� Hopfield networks: asynchronous dynamics and energy minimisation

� Hopfield networks: weight learning

� Graphical models and energy minimisation

� Submodular minimisation, equivalence to MinCut-MaxFlow
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9.1 Hopfield networks

Hopfield (1982): Consider a fully connected network of n binary valued neurons

yi = sign
(∑

j 6=i

wij yj− bi

)

Assumptions:

� symmetric weights, i.e. wij = wji, ∀i, j,

� no neuron has a connection to itself, i.e wii = 0, ∀i.

Asynchronous dynamics:

Only one neuron is updated at a time. E.g. by picking them at random or in some
pre-specified order.

Q: Will the network forever cycle through its state space if started in some particular state?

http://cmp.felk.cvut.cz


3/9
9.1 Hopfield networks

Energy: Each state y ∈ {−1,1}n of the network is characterised by a real number called
energy

E(y) =−1
2

n∑
i=1

n∑
j=1

wij yi yj +

n∑
i=1

bi yi =−
1

2
〈y,W y〉+ 〈b,y〉,

where W denotes the matrix of weights (symmetric, zero diagonal elements) and b denotes
the vector of thresholds.

Theorem: A Hopfield network with n units and asynchronous dynamics, which starts from
any given network state, eventually reaches a stable state at a local minimum of the energy
function.

Proof: Consider the update of a neuron, assume it is unit k, i.e. y′ = (y1, . . . ,y
′
k, . . . ,yn):

y′k = sign
(∑

j 6=i

wij yj− bi

)
6= yk

Denoting the activation by ak, we consequently have y′kak > 0 and ykak < 0.

Considering all affected terms in the energy, we have
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9.1 Hopfield networks

E(y)−E(y′) =−(yk−y′k)
[ n∑

j=1

wkjyj− bk

]
> 0

This shows that the energy is reduced each time the state of a unit is altered. The assertion
follows, because the state space of the network is finite. �

Hopfield networks can be used as auto-associative memory for storing binary patterns!

Q: Given a set of patterns y`, `= 1, . . . ,m which we want to store, how shall we choose the
weights W and thresholds b?

A1: Hebbian learning:

wij =
1

m

m∑
`=1

y`
iy

`
j for i 6= j and bi =−

1

m

m∑
`=1

y`
i

A2: Perceptron learning: cycle through `= 1, . . . ,m and k = 1, . . . ,n. If for some `, k

y`
k 6= sign

(∑
j 6=k

wkj y
`
j− bk

)
,

update wkj→ wkj +y
`
ky

`
j and bk→ bk−y`

k.
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9.1 Hopfield networks

How many binary patterns can be stored in a network with n units? On average 2n random
patterns.

So far considered fix-points and learning conditions - local minima of the energy.

Critical questions:

� Are there polynomial time algorithms for computing global minima of the energy of a
Hopfield network? No, the task is NP-complete in general.

� Are there learning algorithms s.t. the patterns are stored as global minima? No, not in
general.
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9.2 Graphical models (structured output predictors)

Structured output predictors
� Graph (V,E) and label alphabet K
� A labelling y : V →K assigns to each node i ∈ V a label yi ∈K

� Measurements: a feature xi for each node i ∈ V
� Predictor

y∗ = argmin
y

[∑
ij∈E

gij(yi,yj)+
∑
i∈V

qi(yi,xi)
]

where gij and qi are functions associated with the edges and nodes of the graph.

Remarks
� Such energy minimisation problems are also called (Min,+)-problems,
� The class of (Min,+)-problems is NP-complete (MaxClique)
� There are tractable subclasses of (Min,+)-problems.

• (Min,+)-problems are solvable in polynomial time if the graph (V,E) is acyclic

• (Min,+)-problems are solvable in polynomial time for submodular functions
� There are efficient approximation algorithms for (Min,+)-problems
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9.2 Graphical models (structured output predictors)

A tractable subclass of (Min,+)-problems for |K|= 2

� w.l.o.g. K = {0,1}, yi = 0,1 and gij(yi,yj) = αij|yi−yj|

y∗ = argmin
y

[∑
ij∈E

αij|yi−yj|+
∑
i∈V

qiyi

]
= argmin

y

[∑
ij∈E

αij|yi−yj|+
∑
i∈V+

qiyi+
∑

i∈V−

|qi|(1−yi)
]

where V+ = {i ∈ V | qi > 0}, V− = V \V+.

This is a MinCut-problem!
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9.2 Graphical models (structured output predictors)

MinCut problems

� Let (V,E,w) be an undirected, weighted graph, where w : E→ R.

� s, t ∈R two fixed vertices (called source and target)

� (s, t)-cut: Partition of vertices V = V1∪V2 such that s ∈ V1, t ∈ V2
� Cost of an (s, t)-cut

C(V1,V2) =
∑
i∈V1

∑
j∈V2

wij

� MinCut: Find an (s, t)-cut with minimal cost

Can be expressed as an integer optimisation task by assigning to each vertex i ∈ V a binary
variable yi = 0,1

Each MinCut-problem with non-negative edge weights is equivalent to a linear optimisation
problem. Its dual is a MaxFlow-problem
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9.2 Graphical models (structured output predictors)

MaxFlow problems

� Let (V,E,w) be an undirected, weighted graph, where w : E→ R+.

� s, t ∈ V two fixed vertices (called source and target). Fix an orientation for each edge.

� (s, t)-Flow: a map f : E→ R with convention fij =−fji such that ∀i 6= s, t

∑
j:(j,i)∈E

fji+
∑

j:(i,j)∈E

fij = 0

� Feasible flow: 0≤ fsi ≤ wsi, 0≤ fit ≤ wit and |fij| ≤ wij.

� Value of a feasible (s, t)-flow f :

V (f) =
∑

i:(s,i)∈E

fsi =
∑

j:(j,t)∈E

fjt

� MaxFlow problem: find a feasible flow with maximal value.

� MaxFlow problems can be solved in polynomial time.
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