
Statistical Machine Learning (BE4M33SSU)
Lecture 13: Reinforcement Learning

Jan Drchal

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

2/46
Overview

Topics covered in the lecture:

� Reinforcement Learning problem

� Markov Decision Processes (MDPs)

� Methods based on dynamic programming

� Sampling methods: Monte Carlo, Temporal Differences

� SARSA and Q-learning

� Value function approximation

http://cmp.felk.cvut.cz

3/46
Resources

� Sutton and Barto: An Introduction to Reinforcement Learning, 1998

• second edition draft free to download:
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

� David Silver: UCL Course on RL:
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

� Szepesvári: Algorithms for Reinforcement Learning, 2010

• available free: https://sites.ualberta.ca/~szepesva/RLBook.html

http://cmp.felk.cvut.cz
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://sites.ualberta.ca/~szepesva/RLBook.html

http://anji.sourceforge.net/polebalance.htm

4/46
What is Reinforcement Learning?

� Tasks: robot control, game playing, managing investments

� No supervisor, just reward signal

� Feedback is often delayed

� Time matters: no i.i.d. data, e.g., what robot sees is correlated with
what it has seen a second before

� Agent takes actions → influences the environment → influences data it
receives in future

http://anji.sourceforge.net/polebalance.htm
http://cmp.felk.cvut.cz

5/46
Agent-Environment Interface48 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

More specifically, the agent and environment interact at each of a sequence of
discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some
representation of the environment’s state, St 2 S, where S is the set of possible states,
and on that basis selects an action, At 2 A(St), where A(St) is the set of actions
available in state St. One time step later, in part as a consequence of its action, the
agent receives a numerical reward , Rt+1 2 R ⇢ R, and finds itself in a new state,
St+1.3 Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to probabilities
of selecting each possible action. This mapping is called the agent’s policy and is
denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s. Reinforcement
learning methods specify how the agent changes its policy as a result of its experience.
The agent’s goal, roughly speaking, is to maximize the total amount of reward it
receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision-making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch
or to go to graduate school. Similarly, the states can take a wide variety of forms.
They can be completely determined by low-level sensations, such as direct sensor
readings, or they can be more high-level and abstract, such as symbolic descriptions
of objects in a room. Some of what makes up a state could be based on memory
of past sensations or even be entirely mental or subjective. For example, an agent
could be in the state of not being sure where an object is, or of having just been
surprised in some clearly defined sense. Similarly, some actions might be totally
mental or computational. For example, some actions might control what an agent
chooses to think about, or where it focuses its attention. In general, actions can be
any decisions we want to learn how to make, and the states can be anything we can
know that might be useful in making them.

2We restrict attention to discrete time to keep things as simple as possible, even though many
of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996;
Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Sutton and Barto: An Introduction to Reinforcement Learning, draft of the 2nd ed., 2016

� Discrete timesteps

� Signal St is a representation of environment’s state

� Action At leads to a reward Rt+1 and a new state St+1

� The sequence goes: S0, A0, R1, . . . , St, At, Rt+1, St+1, At+1, . . .

� Note that rewards may be delayed many steps from actions which
caused them!

http://cmp.felk.cvut.cz

6/46
Markov Property

� We want a state signal which retains all relevant information in a
compact form

� When a state depends only on a previous state and an action taken (not
on a whole history):

P(St+1 | St, At) = P(St+1 | S0, A0, R1, S1, A1, R2, . . . , Rt, St, At)

we say it has a Markov property (we use also terms like Markov state,
Markovian task, etc.)

� Agent does not need to keep any internal state (memory) to act
optimally

� Methods in the following slides assume Markov state signals only,
although they are often applied to Markovian approximations of
non-Markovian tasks in practice

http://cmp.felk.cvut.cz

7/46
Markov Decision Process (MDP)

Definition 1. A finite Markov Decision Process is a tuple 〈S,A,P,R, γ〉

� S is a finite set of states

� A is a finite set of actions, A(s) are actions available at s ∈ S

� P defines state transition probabilities:

Pass′ = P (St+1 = s′ | St = s,At = a)

� R is a reward function:

Ras = E (Rt+1 | St = s,At = a)

� γ ∈ [0, 1] is a discount factor

Only stationary tasks covered here: the probabilities do not change in time

http://cmp.felk.cvut.cz

8/46
Policy

Definition 2. A policy π is a distribution:

π(a|s) = P (At = a | St = s)

� Defines agent’s behavior

� MDP policies depend on the current state not on a history

� Deterministic policy: a = π(s)

http://cmp.felk.cvut.cz

9/46
Return

Definition 3. The return Gt is the total discounted reward from
time-step t:

Gt = Rt+1 + γRt+2 + . . . =

∞∑
k=0

γkRt+k+1

� The discount γ ∈ [0, 1] is the present value of the future rewards

� The value of receiving reward R after k + 1 steps is γkR

http://cmp.felk.cvut.cz

10/46
Why Discount?

� Mathematically convenient

• Gt converges for Rt bounded and γ ∈ [0, 1)

� Humans prefer immediate rewards

� Lower discount when we do not trust the model

� Undiscounted returns (γ = 1) may be used when all sequences
terminate: episodic tasks

http://cmp.felk.cvut.cz

11/46
Value Functions

Definition 4. The state-value function vπ(s) is the expected return of
starting in state s and following policy π:

vπ(s) = Eπ (Gt | St = s)

Definition 5. The action-value function qπ(s, a) is the expected return of
starting in state s, taking action a and following policy π:

qπ(s, a) = Eπ (Gt | St = s,At = a)

� The task of Reinforcement Learning is to find a policy which maximizes
the expected return

� Note that the subscripts used in expected values denote that the policy
π is used, not that we sum over policies!

http://cmp.felk.cvut.cz

12/46
Value Function Decomposition

� The state-value function can be decomposed into immediate reward and
a discounted value of the successor state:

vπ(s) = Eπ (Rt+1 + γvπ(St+1) | St = s)

� The action-value function can be similarly decomposed to:

qπ(s, a) = Eπ (Rt+1 + γqπ(St+1, At+1) | St = s,At = a)

http://cmp.felk.cvut.cz

13/46
Bellman Expectation Equations

We can convert between the state-value and action-value functions:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

qπ(s, a) = Ras + γ
∑
s′∈S

Pass′vπ(s′)

hence we can get recursive equations:

vπ(s) =
∑
a∈A

π(a|s)

Ras + γ
∑
s′∈S

Pass′vπ(s′)

qπ(s, a) = Ras + γ

∑
s′∈S

Pass′
∑
a′∈A

π(a′|s′)qπ(s′, a′)

� We call these equations the Bellman expectation equations
� For a state-value function vπ(s), s ∈ S we have a system of |S|
simultaneous linear equations in |S| unknowns

http://cmp.felk.cvut.cz

14/46
Optimal Value Functions

Definition 6. The optimal state-value function v∗(s) is the maximum value
function over all policies:

v∗(s) = max
π

vπ(s)

Definition 7. Similarly the optimal action-value function is:

q∗(s, a) = max
π

qπ(s, a)

http://cmp.felk.cvut.cz

15/46
Optimal Policy

Definition 8. Partial ordering over all policies:

π ≥ π′ if and only if vπ(s) ≥ vπ′(s), ∀s ∈ S

For any MDP:
� there exists at least one optimal policy π∗ ≥ π,∀π
� it achieves the optimal state-value function: vπ∗(s) = v∗(s)

� and the optimal action-value function: qπ∗(s, a) = q∗(s, a)

An optimal greedy policy can be found:

π∗(a|s) = I
{
a = argmax

a′∈A
q∗(s, a

′)

}
� Knowing q∗(s, a) gives us immediately the optimal policy π∗(a|s)!
� There is always a deterministic optimal policy for any MDP

http://cmp.felk.cvut.cz

16/46
Bellman Optimality Equations

For optimal value functions we have:

v∗(s) = max
a

q∗(s, a)

q∗(s, a) = Ras + γ
∑
s′∈S

Pass′v∗(s
′)

hence:

v∗(s) = max
a

Ras + γ
∑
s′∈S

Pass′v∗(s
′)

q∗(s, a) = Ras + γ

∑
s′∈S

Pass′max
a′

q∗(s
′, a′)

� We call these equations the Bellman optimality equations
� The equations are non-linear ⇒ generally no closed form solution
� Iterative methods are used to get approximate solutions in practice

http://cmp.felk.cvut.cz

17/46
Policy Evaluation

� Dynamic programming approach to evaluate vπ:
1. initialize (e.g. randomize) v1, iteration k = 1

2. use Bellman Expectation equation to update

vk+1(s) =
∑
a∈A

π(a|s)

Ras + γ
∑
s′∈S

Pass′vk(s
′)

3. k ← k + 1

4. go to 2 until convergenece (e.g., maxs |vk(s)− vk−1(s)| is less than a
threshold)

� The algorithm generates a sequence v1→ v2→ . . .→ vπ

� All one-step transitions from s involved: full backup
� Policy evaluation for action-value function qπ(s, a) is analogous
� Convergence proof using contraction mapping theorem (see Szepesvári)
� Asynchronous version is possible and converges too

http://cmp.felk.cvut.cz

18/46
Policy Improvement

� Can we improve our policy using the evaluated value function?
� Consider a deterministic policy: a = π(s)
� Define a new greedy policy w.r.t. to the actual value function:

π′(s) = argmax
a

qπ(s, a)

� Using the greedy policy for just one step leads to an improvement:

qπ(s, π′(s)) = max
a

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

� Let us show that improvement holds for more than one step:

vπ(s) ≤ qπ(s, π′(s)) = Eπ′ (Rt+1 + γvπ(St+1) | St = s)

≤ Eπ′ (Rt+1 + γqπ(St+1, π
′(St+1)) | St = s)

≤ Eπ′
(
Rt+1 + γRt+2 + γ2qπ(St+2, π

′(St+2)) | St = s
)

≤ Eπ′ (Rt+1 + γRt+2 + . . . | St = s) = vπ′(s)

http://cmp.felk.cvut.cz

19/46
Policy Improvement (contd.)

� When improvements stop:

qπ(s, π′(s)) = max
a

qπ(s, a) = qπ(s, π(s)) = vπ(s)

it means Bellman optimality equation was satisfied:

vπ(s) = max
a

qπ(s, a)

and therefore the optimal policy was found: vπ(s) = v∗(s), ∀s ∈ S

� For stochastic policies:

• assign a portion of probability to each maximizing action,

• set zero to all other activities

http://cmp.felk.cvut.cz

20/46
Policy Iteration

� Policy iteration method searches for an optimal policy π∗

� Initial policy is iteratively improved by repeating the following two steps:

• Evaluate value function vπk for the actual policy πk using the
policy evaluation

• Improve the policy using the policy improvement:
πk+1 = greedy(vπk)

� We get a chain of monotonically improving policies and value functions:

π1
E−→ vπ1

I−→ π2
E−→ vπ2

I−→ π3
E−→ . . .

I−→ π∗
E−→ vπ∗

� Finite MDP =⇒ finite number of policies =⇒ finite number of
iterations

http://cmp.felk.cvut.cz

21/46
Grid World Example

82 CHAPTER 4. DYNAMIC PROGRAMMING

su�ciently small. The box shows a complete algorithm with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact
leave the state unchanged. Thus, for instance, p(6, �1 | 5, right) = 1, p(7, �1 |
7, right) = 1, and p(10, r | 5, right) = 0 for all r 2 R. This is an undiscounted,
episodic task. The reward is �1 on all transitions until the terminal state is reached.
The terminal state is shaded in the figure (although it is shown in two places, it is
formally one state). The expected reward function is thus r(s, a, s0) = �1 for all
states s, s0 and actions a. Suppose the agent follows the equiprobable random policy
(all actions equally likely). The left side of Figure 4.1 shows the sequence of value
functions {vk} computed by iterative policy evaluation. The final estimate is in fact
v⇡, which in this case gives for each state the negation of the expected number of
steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is
q⇡(11, down)? What is q⇡(7, down)?

Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld
just below state 13, and its actions, left, up, right, and down, take the agent to
states 12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from
state 13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable
random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the
action-value function q⇡ and its successive approximation by a sequence of functions
q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies for which
eventual termination is not guaranteed. For example, in the grid problem above it is
possible to go back and forth between two states forever. In a task that is otherwise
perfectly sensible, v⇡(s) may be negative infinity for some policies and states, in
which case the algorithm for iterative policy evaluation given in Figure 4.1 will not
terminate. As a purely practical matter, how might we amend this algorithm to as-
sure termination even in this case? Assume that eventual termination is guaranteed
under the optimal policy.

Sutton and Barto: An Introduction to Reinforcement Learning, draft of the 2nd ed., 2016

http://cmp.felk.cvut.cz

22/46
Grid World Example (contd.)

4.1. POLICY EVALUATION 83

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column
is the sequence of approximations of the state-value function for the random policy (all
actions equal). The right column is the sequence of greedy policies corresponding to the
value function estimates (arrows are shown for all actions achieving the maximum). The last
policy is guaranteed only to be an improvement over the random policy, but in this case it,
and all policies after the third iteration, are optimal.

Sutton and Barto: An Introduction to Reinforcement Learning, draft of the 2nd ed., 2016

http://cmp.felk.cvut.cz

23/46
Grid World Example (contd.)

4.1. POLICY EVALUATION 83

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column
is the sequence of approximations of the state-value function for the random policy (all
actions equal). The right column is the sequence of greedy policies corresponding to the
value function estimates (arrows are shown for all actions achieving the maximum). The last
policy is guaranteed only to be an improvement over the random policy, but in this case it,
and all policies after the third iteration, are optimal.

Sutton and Barto: An Introduction to Reinforcement Learning, draft of the 2nd ed., 2016

http://cmp.felk.cvut.cz

24/46
Value Iteration

� Do we really need to exactly evaluate value vk?

� Idea: truncate policy evaluation

� Truncation to single step → value iteration:

vk+1(s) = max
a∈A

Ras + γ
∑
s′∈S

Pass′vk(s
′)

� Note that the above value iteration update replaces the sum over all
actions by maximum in the policy evaluation update

http://cmp.felk.cvut.cz

25/46
Monte-Carlo Prediction

� Evaluates value functions with no prior knowledge of the environment’s
dynamics (transitions, rewards)

� Based on averaging sampled returns

� Limited to episodic tasks (termination needed)

� First-visit Monte-Carlo policy evaluation:

• the first time t a state s is visited in episode:

• increment counter: N(s)← N(s) + 1

• increment total return: S(s)← S(s) +Gt

• estimate value: V (s) = S(s)/N(s)

• Convergence by law of large numbers: V (s)→ vπ(s) as N(s)→∞

� Other possibility: every-visit Monte-Carlo policy evaluation

http://cmp.felk.cvut.cz

26/46
Monte-Carlo Prediction (contd.)

� Use moving average: µk = 1
k

∑k
i=1 xi = µk−1 + 1

k(xk − µk−1)

� Update after each episode is then:

V (s)← V (s) +
1

N(s)
(Gt − V (s))

� Getting qπ(s, a) estimates Q(s, a) is analogous

� What if not all needed states/actions are visited (e.g., when π is a
deterministic policy)? → we will deal with that later

� For non-stationary problems we typically forget:

V (s)← V (s) + α(Gt − V (s))

� No bootstraping : an estimate for a state is not build upon other state
estimates (DP methods did this)

http://cmp.felk.cvut.cz

27/46
Temporal Difference (TD) Prediction

� Temporal Difference (TD) methods can learn from incomplete episodes
by bootstrapping

� MC updates toward an actual return Gt:

V (St)← V (St) + α(Gt − V (St))

� TD(0) algorithm updates toward an estimated return Rt+1 + γV (St+1):

V (St)← V (St) + α(Rt+1 + γV (St+1) − V (St))

� Rt+1 + γV (St+1) is called the TD target

� δt = Rt+1 + γV (St+1)− V (St) is called the TD error

http://cmp.felk.cvut.cz

28/46
TD vs. MC

� TD can learn from incomplete sequences

• TD can learn online after every step ⇒ works in continuing
(non-terminating) environments

• MC must wait until an episode ends and its return is known ⇒
works for episodic (terminating) environments only

� Convergence

• TD is faster in practice (but still no theoretical results)

• MC has good convergence properties (even with value function
approximation)

• TD(0) converges to vπ(s) (not always with function approximation)

• MC not sensitive to initial values

• TD sensitive

http://cmp.felk.cvut.cz

29/46
Monte-Carlo Backup

V (St)← V (St) + α(Gt − V (St))

http://cmp.felk.cvut.cz

30/46
Temporal-Difference Backup

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

http://cmp.felk.cvut.cz

31/46
Dynamic Programming Backup

V (St)← Eπ (Rt+1 + γV (St+1))

http://cmp.felk.cvut.cz

32/46
TD(λ)

� Consider n-step returns:

G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n)

� Note that G(1)
t is a target for TD(0), while G(∞)

t a target for MC
� TD(λ) prediction combines all G(n)

t using weighted average:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t

� This version of the TD(λ) is limited to episodic tasks
� TD(λ) with eligibility traces works even for incomplete tasks
� In practice TD(λ) gives the best results

http://cmp.felk.cvut.cz

33/46
Generalized Policy Iteration

� Recall the policy iteration which iteratively repeats the following two
steps:

• Evaluate value function: estimate vπ using, e.g., iterative policy
evaluation or value iteration

• Improve the policy: get π′ ≥ π by, e.g., greedy policy improvement

� Can we get convergence for different evaluation and improvement
approaches?

� What about using MC for the evaluation? There are two problems:

• greedy improvement over V (s) requires a model of the MDP:
π′(s) = argmaxa

(
Ras + Pass′V (s′)

)
=⇒ use Q(s, a) instead: π′(s) = argmaxaQ(s, a),

• greedy strategy prevents exploration!

http://cmp.felk.cvut.cz

34/46
Exploration by ε-greedy Policy

� Simplest idea for continual exploration: ε-greedy policy

� ε-greedy policy selects a random action with probability ε otherwise it
selects maximum valued actions:

π(a|s) =

{
ε

|A(s)| for non-greedy actions
1− ε+ ε

|A(s)| for the greedy action

� For any ε-greedy policy π, the ε-greedy policy π′ with respect to qπ is an
improvement, vπ′(s) ≥ vπ(s).i.e., policy improvement works (see
seminar)

� MC policy iteration = MC evaluation + ε-greedy policy improvement

http://cmp.felk.cvut.cz

35/46
Greedy in the Limit with Infinite Exploration (GLIE)

� We can let MC converge which might be slow...
� Or we can run it for a limited number of episodes, (e.g., a single one)
before improving using ε-greedy policy

Definition 9. Greedy in the Limit with Infinite Exploration (GLIE)
� All state-action pairs are explored infinitely many times,

lim
k←∞

Nk(s, a) =∞

� The policy converges to a greedy policy:

lim
k←∞

πk(a|s) = I
{
a = argmax

a∈A
Qk(s, a

′)

}
� GLIE ensures convergence
� Example: ε-greedy is GLIE if ε reduces to zero at εk = 1

k

http://cmp.felk.cvut.cz

36/46
SARSA

� SARSA is a favourite method which uses TD instead of MC

Theorem 1. SARSA converges, i.e., Q(s, a)⇒ q∗(s, a) if:
� GLIE sequence of policies πt(a|s)
� Robbins-Monro sequence of step-sizes αt satisfies:

∞∑
t=1

αt =∞ and
∞∑
t=1

α2
t <∞

http://cmp.felk.cvut.cz

37/46
Off-Policy Learning

� Evaluate target policy π(a|s) why following a different behaviour policy
µ(a|s)

� Why?

• Learn from observing other humans (agents)

• Re-use experience generated from old policies π1, π2, . . . , πt−1

• Learn about optimal policy while following exploratory policy

http://cmp.felk.cvut.cz

38/46
Q-Learning

� Watkins 1989

� Next action At is chosen using behaviour policy µ

� But we consider an alternative successor action A′ using target policy π

� Update Q(St, At) towards the alternative action:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, A
′) −Q(St, At))

� We allow both policies to be improved

� The target policy π is greedy w.r.t. to Q(s, a):

π(St+1) = argmax
a′

Q(St+1, a
′)

� The behaviour policy is µ is ε-greedy w.r.t. Q(s, a)

http://cmp.felk.cvut.cz

39/46
Q-Learning (contd.)

� The Q-learning target simplifies to:

Rt+1 + γQ(St+1, A
′)

= Rt+1 + γQ(St+1, argmax
a′

Q(St+1, a
′))

= Rt+1 + γmax
a′

Q(St+1, a
′)

http://cmp.felk.cvut.cz

40/46
Value Function Approximation

� So far we have presented value functions V (s) and Q(s, a) as lookup
tables

� This is impractical for large MDPs:

• Too many states/actions to store in memory

• Too slow to learn the value for each state/action

� Idea: use function approximation:

V̂ (S,w) ≈ V (S)

Q̂(S,A,w) ≈ Q(S,A)

� Use any paradigm available: linear regression, neural networks, KNN,
decision trees, . . .

http://cmp.felk.cvut.cz

41/46
ANNs for Value Function Approximation

� When mean-squared loss is used:

L(w) = Eπ
(

[vπ(S)− V̂ (S,w)]2
)

� We end up with the following Stochastic Gradient Descent update:

∆w = η[vπ(St)− V̂ (St,w)]∇wV̂ (St,w)

where η is the learning rate, vπ(S)− V̂ (S,w) is the error and
∇wV̂ (S,w) can be evaluated using back propagation

� Problem: we don’t know vπ =⇒

• for MC approach use the return Gt instead

• for TD(0) use Rt+1 + γV (St+1)

• for TD(λ) use Gλt

http://cmp.felk.cvut.cz

42/46
Batch Learning

� In the previous online setup the neural network was continually updated
and the samples were immediately discarded

� In many cases it is better to construct a training dataset and use batch
learning, for Monte-Carlo it might be:

T = {(S1, G1), (S2, G2), . . .}

� Random sampling from T also "decorrelates" the samples

� This approach is called the experience replay

http://cmp.felk.cvut.cz

43/46
Example: Playing Atari 2600 Games

� Mnih et al.: Human-level control through deep reinforcement learning,
2015

� You get 160× 250 RGB images at 60Hz. The task is to find a policy
which chooses one of 18 possible actions (9 joystick positions, fire
button on/off) lead

� More than 50 games are available. See
http://www.arcadelearningenvironment.org/

http://cmp.felk.cvut.cz
http://www.arcadelearningenvironment.org/

44/46
Atari: Deep Q-Network (DQN) Approach

DQN uses experience replay and fixed Q-targets

� Take an action at according to ε-greedy policy

� Store a transition (st, at, rt+1, st+1) into replay memory T

� Sample a random mini-batch from T

� Compute Q-learning targets w.r.t. old, fixed parameters w̄

� Optimize mean-squared error between Q-network and Q-learning targets:

L(w) = Es,a,r,s′∼T

([
r + γmax

a′
Q(s′, a′, w̄)−Q(s, a,w)

]2)

� A variant of SGD used

http://cmp.felk.cvut.cz

45/46
Atari: DQN Architecture

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

http://cmp.felk.cvut.cz

46/46
Atari: Results

se
e

Fi
g.

3,
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

2)
.I

n
ad

di
tio

na
ls

im
ul

at
io

ns
(s

ee
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

s3
an

d
4)

,w
ed

em
on

st
ra

te
th

ei
m

po
rt

an
ce

of
th

ei
nd

iv
id

ua
l

co
re

co
m

po
ne

nt
so

ft
he

D
Q

N
ag

en
t—

th
er

ep
la

y
m

em
or

y,
se

pa
ra

te
ta

rg
et

Q
-n

et
w

or
k

an
d

de
ep

co
nv

ol
ut

io
na

ln
et

w
or

k
ar

ch
ite

ct
ur

e—
by

di
sa

bl
in

g
th

em
an

d
de

m
on

st
ra

tin
g

th
e

de
tr

im
en

ta
le

ffe
ct

s
on

pe
rf

or
m

an
ce

.
W

e
ne

xt
ex

am
in

ed
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

th
at

un
de

r-
pi

nn
ed

th
es

uc
ce

ss
fu

lp
er

fo
rm

an
ce

of
th

ea
ge

nt
in

th
ec

on
te

xt
of

th
eg

am
e

Sp
ac

eI
nv

ad
er

s(
se

eS
up

pl
em

en
ta

ry
V

id
eo

1
fo

ra
de

m
on

st
ra

tio
n

of
th

e
pe

rf
or

m
an

ce
of

D
Q

N
),

by
us

in
g

a
te

ch
ni

qu
e

de
ve

lo
pe

d
fo

rt
he

vi
su

al
-

iz
at

io
n

of
hi

gh
-d

im
en

si
on

al
da

ta
ca

lle
d

‘t-
SN

E’
25

(F
ig

.4
).

A
se

xp
ec

te
d,

th
e

t-
SN

E
al

go
ri

th
m

te
nd

st
o

m
ap

th
e

D
Q

N
re

pr
es

en
ta

tio
n

of
pe

rc
ep

-
tu

al
ly

sim
ila

rs
ta

te
st

o
ne

ar
by

po
in

ts
.I

nt
er

es
tin

gl
y,

w
ea

lso
fo

un
d

in
st

an
ce

s
in

w
hi

ch
th

e
t-

SN
E

al
go

ri
th

m
ge

ne
ra

te
d

si
m

ila
re

m
be

dd
in

gs
fo

rD
Q

N
re

pr
es

en
ta

tio
ns

of
st

at
es

th
at

ar
e

cl
os

e
in

te
rm

so
fe

xp
ec

te
d

re
w

ar
d

bu
t

pe
rc

ep
tu

al
ly

di
ss

im
ila

r(
Fi

g.
4,

bo
tt

om
ri

gh
t,

to
p

le
ft

an
d

m
id

dl
e)

,c
on

-
si

st
en

tw
ith

th
en

ot
io

n
th

at
th

en
et

w
or

k
is

ab
le

to
le

ar
n

re
pr

es
en

ta
tio

ns
th

at
su

pp
or

ta
da

pt
iv

eb
eh

av
io

ur
fr

om
hi

gh
-d

im
en

si
on

al
se

ns
or

y
in

pu
ts

.
Fu

rt
he

rm
or

e,
w

e
al

so
sh

ow
th

at
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

ar
e

ab
le

to
ge

ne
ra

liz
e

to
da

ta
ge

ne
ra

te
d

fr
om

po
lic

ie
s

ot
he

r
th

an
its

ow
n—

in
si

m
ul

at
io

ns
w

he
re

w
ep

re
se

nt
ed

as
in

pu
tt

o
th

en
et

w
or

k
ga

m
e

st
at

es
ex

pe
ri

en
ce

d
du

ri
ng

hu
m

an
an

d
ag

en
tp

la
y,

re
co

rd
ed

th
e

re
pr

e-
se

nt
at

io
ns

of
th

e
la

st
hi

dd
en

la
ye

r,
an

d
vi

su
al

iz
ed

th
e

em
be

dd
in

gs
ge

n-
er

at
ed

by
th

et
-S

N
E

al
go

rit
hm

(E
xt

en
de

d
D

at
aF

ig
.1

an
d

Su
pp

le
m

en
ta

ry
D

is
cu

ss
io

n)
.E

xt
en

de
d

D
at

a
Fi

g.
2

pr
ov

id
es

an
ad

di
tio

na
li

llu
st

ra
tio

n
of

ho
w

th
e

re
pr

es
en

ta
tio

ns
le

ar
ne

d
by

D
Q

N
al

lo
w

it
to

ac
cu

ra
te

ly
pr

ed
ic

t
st

at
e

an
d

ac
tio

n
va

lu
es

.
It

is
w

or
th

no
tin

g
th

at
th

eg
am

es
in

w
hi

ch
D

Q
N

ex
ce

ls
ar

ee
xt

re
m

el
y

va
ri

ed
in

th
ei

rn
at

ur
e,

fr
om

si
de

-s
cr

ol
lin

g
sh

oo
te

rs
(R

iv
er

R
ai

d)
to

bo
x-

in
g

ga
m

es
(B

ox
in

g)
an

d
th

re
e-

di
m

en
si

on
al

ca
r-

ra
ci

ng
ga

m
es

(E
nd

ur
o)

.

M
on

te
zu

m
a'

s
R

ev
en

ge
P

riv
at

e
Ey

e
G

ra
vi

ta
r

Fr
os

tb
ite

A
st

er
oi

ds
M

s.
 P

ac
-M

an
B

ow
lin

g
D

ou
bl

e
D

un
k

S
ea

qu
es

t
Ve

nt
ur

e
A

lie
n

A
m

id
ar

R
iv

er
 R

ai
d

B
an

k
H

ei
st

Za
xx

on

C
en

tip
ed

e
C

ho
pp

er
 C

om
m

an
d

W
iz

ar
d

of
 W

or
B

at
tle

 Z
on

e
A

st
er

ix
H

.E
.R

.O
.

Q
*b

er
t

Ic
e

H
oc

ke
y

U
p

an
d

D
ow

n
Fi

sh
in

g
D

er
by

En
du

ro
Ti

m
e

P
ilo

t
Fr

ee
w

ay
K

un
g-

Fu
 M

as
te

r
Tu

ta
nk

ha
m

B
ea

m
 R

id
er

S
pa

ce
 In

va
de

rs
P

on
g

Ja
m

es
 B

on
d

Te
nn

is

K
an

ga
ro

o
R

oa
d

R
un

ne
r

A
ss

au
lt

K
ru

ll
N

am
e

Th
is

 G
am

e
D

em
on

 A
tt

ac
k

G
op

he
r

C
ra

zy
 C

lim
be

r
A

tla
nt

is
R

ob
ot

an
k

S
ta

r G
un

ne
r

B
re

ak
ou

t
B

ox
in

g
Vi

de
o

P
in

ba
ll

A
t h

um
an

-le
ve

l o
r a

bo
ve

B
el

ow
 h

um
an

-le
ve

l

0
10

0
20

0
30

0
40

0
4,

50
0%

50
0

1,
00

0
60

0

B
es

t l
in

ea
r l

ea
rn

er

D
Q

N

Fi
gu

re
3

|C
om

pa
ri

so
n

of
th

e
D

Q
N

ag
en

tw
it

h
th

e
be

st
re

in
fo

rc
em

en
t

le
ar

ni
ng

m
et

ho
ds

15
in

th
e

lit
er

at
ur

e.
T

he
pe

rf
or

m
an

ce
of

D
Q

N
is

no
rm

al
iz

ed
w

ith
re

sp
ec

tt
o

a
pr

of
es

si
on

al
hu

m
an

ga
m

es
te

st
er

(t
ha

ti
s,

10
0%

le
ve

l)
an

d
ra

nd
om

pl
ay

(t
ha

ti
s,

0%
le

ve
l).

N
ot

e
th

at
th

en
or

m
al

iz
ed

pe
rf

or
m

an
ce

of
D

Q
N

,
ex

pr
es

se
d

as
a

pe
rc

en
ta

ge
,i

s
ca

lc
ul

at
ed

as
:1

00
3

(D
Q

N
sc

or
e2

ra
nd

om
pl

ay
sc

or
e)

/(
hu

m
an

sc
or

e2
ra

nd
om

pl
ay

sc
or

e)
.I

tc
an

be
se

en
th

at
D

Q
N

ou
tp

er
fo

rm
sc

om
pe

tin
g

m
et

ho
ds

(a
ls

o
se

e
Ex

te
nd

ed
D

at
a

T
ab

le
2)

in
al

m
os

ta
ll

th
e

ga
m

es
,a

nd
pe

rf
or

m
s

at
a

le
ve

lt
ha

ti
sb

ro
ad

ly
co

m
pa

ra
bl

e
w

ith
or

su
pe

ri
or

to
a

pr
of

es
si

on
al

hu
m

an
ga

m
es

te
st

er
(t

ha
ti

s,
op

er
at

io
na

liz
ed

as
a

le
ve

lo
f

75
%

or
ab

ov
e)

in
th

e
m

aj
or

ity
of

ga
m

es
.A

ud
io

ou
tp

ut
w

as
di

sa
bl

ed
fo

r
bo

th
hu

m
an

pl
ay

er
s

an
d

ag
en

ts
.E

rr
or

ba
rs

in
di

ca
te

s.d
.a

cr
os

s
th

e
30

ev
al

ua
tio

n
ep

is
od

es
,s

ta
rt

in
g

w
ith

di
ffe

re
nt

in
iti

al
co

nd
iti

on
s.

LE
TT

ER
RE

SE
AR

CH

2
6

F
E

B
R

U
A

R
Y

2
0

1
5

|
V

O
L

5
1

8
|

N
A

T
U

R
E

|
5

3
1

M
ac

m
ill

an
 P

ub
lis

he
rs

 L
im

ite
d.

 A
ll

rig
ht

s
re

se
rv

ed
©
20
15

http://cmp.felk.cvut.cz

48 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

More specifically, the agent and environment interact at each of a sequence of
discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some
representation of the environment’s state, St 2 S, where S is the set of possible states,
and on that basis selects an action, At 2 A(St), where A(St) is the set of actions
available in state St. One time step later, in part as a consequence of its action, the
agent receives a numerical reward , Rt+1 2 R ⇢ R, and finds itself in a new state,
St+1.3 Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to probabilities
of selecting each possible action. This mapping is called the agent’s policy and is
denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s. Reinforcement
learning methods specify how the agent changes its policy as a result of its experience.
The agent’s goal, roughly speaking, is to maximize the total amount of reward it
receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision-making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch
or to go to graduate school. Similarly, the states can take a wide variety of forms.
They can be completely determined by low-level sensations, such as direct sensor
readings, or they can be more high-level and abstract, such as symbolic descriptions
of objects in a room. Some of what makes up a state could be based on memory
of past sensations or even be entirely mental or subjective. For example, an agent
could be in the state of not being sure where an object is, or of having just been
surprised in some clearly defined sense. Similarly, some actions might be totally
mental or computational. For example, some actions might control what an agent
chooses to think about, or where it focuses its attention. In general, actions can be
any decisions we want to learn how to make, and the states can be anything we can
know that might be useful in making them.

2We restrict attention to discrete time to keep things as simple as possible, even though many
of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996;
Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

82 CHAPTER 4. DYNAMIC PROGRAMMING

su�ciently small. The box shows a complete algorithm with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact
leave the state unchanged. Thus, for instance, p(6, �1 | 5, right) = 1, p(7, �1 |
7, right) = 1, and p(10, r | 5, right) = 0 for all r 2 R. This is an undiscounted,
episodic task. The reward is �1 on all transitions until the terminal state is reached.
The terminal state is shaded in the figure (although it is shown in two places, it is
formally one state). The expected reward function is thus r(s, a, s0) = �1 for all
states s, s0 and actions a. Suppose the agent follows the equiprobable random policy
(all actions equally likely). The left side of Figure 4.1 shows the sequence of value
functions {vk} computed by iterative policy evaluation. The final estimate is in fact
v⇡, which in this case gives for each state the negation of the expected number of
steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is
q⇡(11, down)? What is q⇡(7, down)?

Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld
just below state 13, and its actions, left, up, right, and down, take the agent to
states 12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from
state 13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable
random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the
action-value function q⇡ and its successive approximation by a sequence of functions
q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies for which
eventual termination is not guaranteed. For example, in the grid problem above it is
possible to go back and forth between two states forever. In a task that is otherwise
perfectly sensible, v⇡(s) may be negative infinity for some policies and states, in
which case the algorithm for iterative policy evaluation given in Figure 4.1 will not
terminate. As a purely practical matter, how might we amend this algorithm to as-
sure termination even in this case? Assume that eventual termination is guaranteed
under the optimal policy.

4.1. POLICY EVALUATION 83

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column
is the sequence of approximations of the state-value function for the random policy (all
actions equal). The right column is the sequence of greedy policies corresponding to the
value function estimates (arrows are shown for all actions achieving the maximum). The last
policy is guaranteed only to be an improvement over the random policy, but in this case it,
and all policies after the third iteration, are optimal.

4.1. POLICY EVALUATION 83

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column
is the sequence of approximations of the state-value function for the random policy (all
actions equal). The right column is the sequence of greedy policies corresponding to the
value function estimates (arrows are shown for all actions achieving the maximum). The last
policy is guaranteed only to be an improvement over the random policy, but in this case it,
and all policies after the third iteration, are optimal.

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

se
e

Fi
g.

3,
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

2)
.I

n
ad

di
tio

na
ls

im
ul

at
io

ns
(s

ee
Su

pp
le

m
en

ta
ry

D
is

cu
ss

io
n

an
d

Ex
te

nd
ed

D
at

a
T

ab
le

s3
an

d
4)

,w
ed

em
on

st
ra

te
th

ei
m

po
rt

an
ce

of
th

ei
nd

iv
id

ua
l

co
re

co
m

po
ne

nt
so

ft
he

D
Q

N
ag

en
t—

th
er

ep
la

y
m

em
or

y,
se

pa
ra

te
ta

rg
et

Q
-n

et
w

or
k

an
d

de
ep

co
nv

ol
ut

io
na

ln
et

w
or

k
ar

ch
ite

ct
ur

e—
by

di
sa

bl
in

g
th

em
an

d
de

m
on

st
ra

tin
g

th
e

de
tr

im
en

ta
le

ffe
ct

s
on

pe
rf

or
m

an
ce

.
W

e
ne

xt
ex

am
in

ed
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

th
at

un
de

r-
pi

nn
ed

th
es

uc
ce

ss
fu

lp
er

fo
rm

an
ce

of
th

ea
ge

nt
in

th
ec

on
te

xt
of

th
eg

am
e

Sp
ac

eI
nv

ad
er

s(
se

eS
up

pl
em

en
ta

ry
V

id
eo

1
fo

ra
de

m
on

st
ra

tio
n

of
th

e
pe

rf
or

m
an

ce
of

D
Q

N
),

by
us

in
g

a
te

ch
ni

qu
e

de
ve

lo
pe

d
fo

rt
he

vi
su

al
-

iz
at

io
n

of
hi

gh
-d

im
en

si
on

al
da

ta
ca

lle
d

‘t-
SN

E’
25

(F
ig

.4
).

A
se

xp
ec

te
d,

th
e

t-
SN

E
al

go
ri

th
m

te
nd

st
o

m
ap

th
e

D
Q

N
re

pr
es

en
ta

tio
n

of
pe

rc
ep

-
tu

al
ly

sim
ila

rs
ta

te
st

o
ne

ar
by

po
in

ts
.I

nt
er

es
tin

gl
y,

w
ea

lso
fo

un
d

in
st

an
ce

s
in

w
hi

ch
th

e
t-

SN
E

al
go

ri
th

m
ge

ne
ra

te
d

si
m

ila
re

m
be

dd
in

gs
fo

rD
Q

N
re

pr
es

en
ta

tio
ns

of
st

at
es

th
at

ar
e

cl
os

e
in

te
rm

so
fe

xp
ec

te
d

re
w

ar
d

bu
t

pe
rc

ep
tu

al
ly

di
ss

im
ila

r(
Fi

g.
4,

bo
tt

om
ri

gh
t,

to
p

le
ft

an
d

m
id

dl
e)

,c
on

-
si

st
en

tw
ith

th
en

ot
io

n
th

at
th

en
et

w
or

k
is

ab
le

to
le

ar
n

re
pr

es
en

ta
tio

ns
th

at
su

pp
or

ta
da

pt
iv

eb
eh

av
io

ur
fr

om
hi

gh
-d

im
en

si
on

al
se

ns
or

y
in

pu
ts

.
Fu

rt
he

rm
or

e,
w

e
al

so
sh

ow
th

at
th

e
re

pr
es

en
ta

tio
ns

le
ar

ne
d

by
D

Q
N

ar
e

ab
le

to
ge

ne
ra

liz
e

to
da

ta
ge

ne
ra

te
d

fr
om

po
lic

ie
s

ot
he

r
th

an
its

ow
n—

in
si

m
ul

at
io

ns
w

he
re

w
ep

re
se

nt
ed

as
in

pu
tt

o
th

en
et

w
or

k
ga

m
e

st
at

es
ex

pe
ri

en
ce

d
du

ri
ng

hu
m

an
an

d
ag

en
tp

la
y,

re
co

rd
ed

th
e

re
pr

e-
se

nt
at

io
ns

of
th

e
la

st
hi

dd
en

la
ye

r,
an

d
vi

su
al

iz
ed

th
e

em
be

dd
in

gs
ge

n-
er

at
ed

by
th

et
-S

N
E

al
go

rit
hm

(E
xt

en
de

d
D

at
aF

ig
.1

an
d

Su
pp

le
m

en
ta

ry
D

is
cu

ss
io

n)
.E

xt
en

de
d

D
at

a
Fi

g.
2

pr
ov

id
es

an
ad

di
tio

na
li

llu
st

ra
tio

n
of

ho
w

th
e

re
pr

es
en

ta
tio

ns
le

ar
ne

d
by

D
Q

N
al

lo
w

it
to

ac
cu

ra
te

ly
pr

ed
ic

t
st

at
e

an
d

ac
tio

n
va

lu
es

.
It

is
w

or
th

no
tin

g
th

at
th

eg
am

es
in

w
hi

ch
D

Q
N

ex
ce

ls
ar

ee
xt

re
m

el
y

va
ri

ed
in

th
ei

rn
at

ur
e,

fr
om

si
de

-s
cr

ol
lin

g
sh

oo
te

rs
(R

iv
er

R
ai

d)
to

bo
x-

in
g

ga
m

es
(B

ox
in

g)
an

d
th

re
e-

di
m

en
si

on
al

ca
r-

ra
ci

ng
ga

m
es

(E
nd

ur
o)

.

M
on

te
zu

m
a'

s
R

ev
en

ge
P

riv
at

e
Ey

e
G

ra
vi

ta
r

Fr
os

tb
ite

A
st

er
oi

ds
M

s.
 P

ac
-M

an
B

ow
lin

g
D

ou
bl

e
D

un
k

S
ea

qu
es

t
Ve

nt
ur

e
A

lie
n

A
m

id
ar

R
iv

er
 R

ai
d

B
an

k
H

ei
st

Za
xx

on

C
en

tip
ed

e
C

ho
pp

er
 C

om
m

an
d

W
iz

ar
d

of
 W

or
B

at
tle

 Z
on

e
A

st
er

ix
H

.E
.R

.O
.

Q
*b

er
t

Ic
e

H
oc

ke
y

U
p

an
d

D
ow

n
Fi

sh
in

g
D

er
by

En
du

ro
Ti

m
e

P
ilo

t
Fr

ee
w

ay
K

un
g-

Fu
 M

as
te

r
Tu

ta
nk

ha
m

B
ea

m
 R

id
er

S
pa

ce
 In

va
de

rs
P

on
g

Ja
m

es
 B

on
d

Te
nn

is

K
an

ga
ro

o
R

oa
d

R
un

ne
r

A
ss

au
lt

K
ru

ll
N

am
e

Th
is

 G
am

e
D

em
on

 A
tt

ac
k

G
op

he
r

C
ra

zy
 C

lim
be

r
A

tla
nt

is
R

ob
ot

an
k

S
ta

r G
un

ne
r

B
re

ak
ou

t
B

ox
in

g
Vi

de
o

P
in

ba
ll

A
t h

um
an

-le
ve

l o
r a

bo
ve

B
el

ow
 h

um
an

-le
ve

l

0
10

0
20

0
30

0
40

0
4,

50
0%

50
0

1,
00

0
60

0

B
es

t l
in

ea
r l

ea
rn

er

D
Q

N

Fi
gu

re
3

|C
om

pa
ri

so
n

of
th

e
D

Q
N

ag
en

tw
it

h
th

e
be

st
re

in
fo

rc
em

en
t

le
ar

ni
ng

m
et

ho
ds

15
in

th
e

lit
er

at
ur

e.
T

he
pe

rf
or

m
an

ce
of

D
Q

N
is

no
rm

al
iz

ed
w

ith
re

sp
ec

tt
o

a
pr

of
es

si
on

al
hu

m
an

ga
m

es
te

st
er

(t
ha

ti
s,

10
0%

le
ve

l)
an

d
ra

nd
om

pl
ay

(t
ha

ti
s,

0%
le

ve
l).

N
ot

et
ha

tt
he

no
rm

al
iz

ed
pe

rf
or

m
an

ce
of

D
Q

N
,

ex
pr

es
se

d
as

a
pe

rc
en

ta
ge

,i
s

ca
lc

ul
at

ed
as

:1
00

3
(D

Q
N

sc
or

e2
ra

nd
om

pl
ay

sc
or

e)
/(

hu
m

an
sc

or
e2

ra
nd

om
pl

ay
sc

or
e)

.I
tc

an
be

se
en

th
at

D
Q

N

ou
tp

er
fo

rm
sc

om
pe

tin
g

m
et

ho
ds

(a
ls

o
se

e
Ex

te
nd

ed
D

at
a

T
ab

le
2)

in
al

m
os

ta
ll

th
e

ga
m

es
,a

nd
pe

rf
or

m
s

at
a

le
ve

lt
ha

ti
sb

ro
ad

ly
co

m
pa

ra
bl

e
w

ith
or

su
pe

ri
or

to
a

pr
of

es
si

on
al

hu
m

an
ga

m
es

te
st

er
(t

ha
ti

s,
op

er
at

io
na

liz
ed

as
a

le
ve

lo
f

75
%

or
ab

ov
e)

in
th

e
m

aj
or

ity
of

ga
m

es
.A

ud
io

ou
tp

ut
w

as
di

sa
bl

ed
fo

r
bo

th
hu

m
an

pl
ay

er
s

an
d

ag
en

ts
.E

rr
or

ba
rs

in
di

ca
te

s.d
.a

cr
os

s
th

e
30

ev
al

ua
tio

n
ep

is
od

es
,s

ta
rt

in
g

w
ith

di
ffe

re
nt

in
iti

al
co

nd
iti

on
s.

LE
TT

ER
RE

SE
AR

CH

2
6

F
E

B
R

U
A

R
Y

2
0

1
5

|
V

O
L

5
1

8
|

N
A

T
U

R
E

|
5

3
1

M
ac

m
ill

an
 P

ub
lis

he
rs

 L
im

ite
d.

 A
ll

rig
ht

s
re

se
rv

ed
©
20
15

	First page
	ccmp Overview
	ccmp Resources
	ccmp What is Reinforcement Learning?
	ccmp Agent-Environment Interface
	ccmp Markov Property
	ccmp Markov Decision Process (MDP)
	ccmp Policy
	ccmp Return
	ccmp Why Discount?
	ccmp Value Functions
	ccmp Value Function Decomposition
	ccmp Bellman Expectation Equations
	ccmp Optimal Value Functions
	ccmp Optimal Policy
	ccmp Bellman Optimality Equations
	ccmp Policy Evaluation
	ccmp Policy Improvement
	ccmp Policy Improvement (contd.)
	ccmp Policy Iteration
	ccmp Grid World Example
	ccmp Grid World Example (contd.)
	ccmp Grid World Example (contd.)
	ccmp Value Iteration
	ccmp Monte-Carlo Prediction
	ccmp Monte-Carlo Prediction (contd.)
	ccmp Temporal Difference (TD) Prediction
	ccmp TD vs. MC
	ccmp Monte-Carlo Backup
	ccmp Temporal-Difference Backup
	ccmp Dynamic Programming Backup
	ccmp TD($lambda $)
	ccmp Generalized Policy Iteration
	ccmp Exploration by $epsilon $-greedy Policy
	ccmp Greedy in the Limit with Infinite Exploration (GLIE)
	ccmp SARSA
	ccmp Off-Policy Learning
	ccmp Q-Learning
	ccmp Q-Learning (contd.)
	ccmp Value Function Approximation
	ccmp ANNs for Value Function Approximation
	ccmp Batch Learning
	ccmp Example: Playing Atari 2600 Games
	ccmp Atari: Deep Q-Network (DQN) Approach
	ccmp Atari: DQN Architecture
	ccmp Atari: Results
	Last page

