Statistical Machine Learning (BE4M33SSU) Lecture 2: Empirical Risk Minimization I

Czech Technical University in Prague

BE4M33SSU – Statistical Machine Learning, Winter 2017

Prediction problem: the definition

- igle $\mathcal X$ is a set of input observations
- $igstarrow \mathcal{Y}$ is a finite set of hidden labels
- $(x,y) \in \mathcal{X} \times \mathcal{Y}$ is a realization of a random process with p.d.f. p(x,y)
- A prediction strategy $h: \mathcal{X} \to \mathcal{Y}$
- A loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ penalizes a single prediction

We want to find a precition strategy with the minimal expected risk

$$R(h) = \int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) \ p(x, y) \ \mathrm{d}x = \mathbb{E}_{(x, y) \sim p} \Big(\ell(y, h(x)) \Big)$$

Prediction problem: an example

• Assignment:

•
$$\mathcal{X} = \mathbb{R}$$
, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = \begin{cases} 0 & \text{if } y = y' \\ 1 & \text{if } y \neq y' \end{cases}$

•
$$p(x,y) = p(y) \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu_y)^2}, y \in \mathcal{Y}.$$

• Since p(x, y) is known the solution of the prediction problem is easy:

•
$$h(x) = \operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x) = \begin{cases} +1 & \text{if } x \ge \theta \\ -1 & \text{if } x < \theta \end{cases}$$

•
$$R(h) = \int_{-\infty}^{\theta} p(x,+1) \mathrm{d}x + \int_{\theta}^{\infty} p(x,-1) \mathrm{d}x$$

We will try to solve the problem using only a set of examples

$$\{(x^1, y^1), (x^2, y^2), \ldots\}$$

sampled from i.i.d. rand vars distributed according to unknown p(x, y).

Estimation of the expected risk from examples

• We are given a set of test examples

$$\mathcal{S}^{l} = \{ (x^{i}, y^{i}) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l \}$$

which are drawn from i.i.d. random variables with distribution p(x, y).

Given prediction strategy $h\colon \mathcal{X} o \mathcal{Y}$, we can compute the empirical risk

$$R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$$

- Is the empirical risk $R_{S^l}(h)$ a good approximation of the true expected risk R(h) ?
- Note that the empirical risk $R_{S^l}(h)$ is a random number.

Law of large numbers

- Arithmetic mean of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

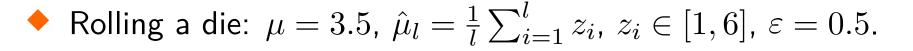
$$\frac{1+2+3+4+5+6}{6} = 3.5$$

According to the LLA, the arithmetic mean of a large number of rolls is likely to be close to 3.5 .

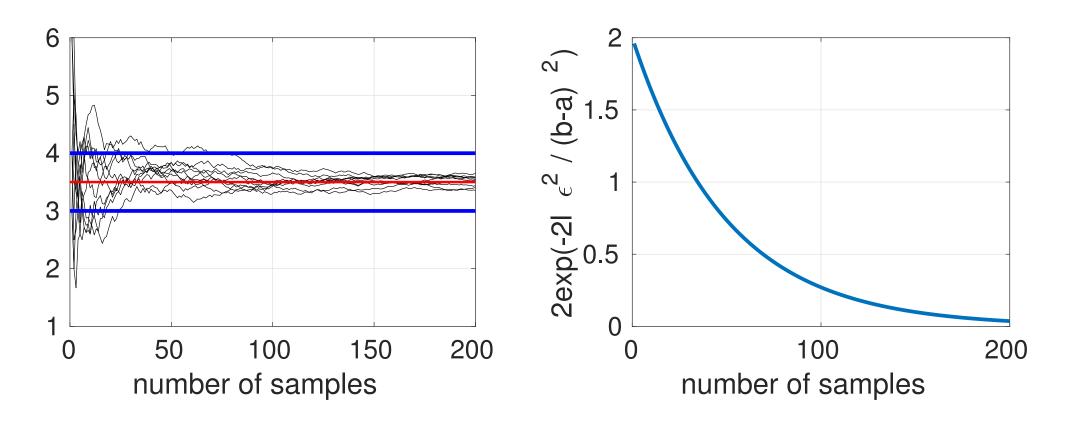
Theorem 1. (Hoeffding inequality) Let $\{z^1, \ldots, z^l\} \in [a, b]^l$ be realizations of independent random variables with the same expected value μ . Then for any $\varepsilon > 0$ it holds that

$$\mathbb{P}\bigg(\Big|\frac{1}{l}\sum_{i=1}^{l}z^{i}-\mu\Big|\geq\varepsilon\bigg)\leq 2e^{-\frac{2l\varepsilon^{2}}{(b-a)^{2}}}$$

Law of large numbers: example



$$\mathbb{P}\left(\left|\hat{\mu}_{l}-\mu\right|\geq\varepsilon\right)\leq2e^{-\frac{2l\,\varepsilon^{2}}{(b-a)^{2}}}$$



Confidence interval

Let μ̂_l = ¹/_l Σ^l_{i=1} zⁱ be the arithmetic average computed from {z¹,..., z^l} ∈ [a, b]^l sampled from rand vars with expected value μ.
For which ε is μ in interval (μ̂_l − ε, μ̂_l + ε) with probability at least γ ? Using the Hoeffding inequality we can write:

$$\mathbb{P}\Big(|\hat{\mu}_l - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\hat{\mu}_l - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l\varepsilon^2}{(b-a)^2}} = \gamma$$

and solving the last equality for ε yields

$$\varepsilon = |b - a| \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2l}}$$

ullet Similarly, for fixed arepsilon and γ we can get the minimal number of samples

$$l = \frac{\log(2) - \log(1 - \gamma)}{2\varepsilon^2} (b - a)^2$$

such that μ is in $(\hat{\mu}_l - \varepsilon, \hat{\mu}_l + \varepsilon)$ with probability at least γ .

Estimation of the expected risk from examples

• Given test examples $S^l = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, ..., l\}$, predictor $h: \mathcal{X} \to \mathcal{Y}$ and loss $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, we estimate the predictor's risk $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h(x)))$ by $R_{S^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i)).$

8/21

- For fixed strategy h, the numbers $z^i = \ell(y^i, h(x^i)) \in [\ell_{\min}, \ell_{\max}]$, $i \in \{1, \ldots, l\}$, are realizations of i.i.d. random variables with the expected value $\mu = R(h)$.
- According to the Hoeffding inequality, for any $\varepsilon > 0$ the probability of seeing a "bad test set" can be bound by

$$\mathbb{P}\left(\left|R_{\mathcal{S}^{l}}(h) - R(h)\right| \ge \varepsilon\right) \le 2e^{-\frac{2l\varepsilon^{2}}{(\ell_{\min} - \ell_{\max})^{2}}}$$

where by "bad test set" we mean that our empirical estimate deviates from the true risk by ε at least.

Learning algorithm

- The goal is to find the prediction rule $h: \mathcal{X} \to \mathcal{Y}$ minimizing R(h) in the case when p(x, y) is unknown.
- We are given a training set of examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

9/21

drawn from i.i.d. random variables distributed according to p(x, y).

• Let
$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$
 be a hypothesis space.

• The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ selects hypothesis $h_m = A(\mathcal{T}^m)$ based on training examples \mathcal{T}^m .

Learning by Empirical Risk Minimization

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from examples

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

• The ERM learning algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

10/21

Depending on the choice of *H*, *l* and algorithm solving (1) we get individual instances, e.g.: Support Vector Machines, Linear Regression, Logistic regression, Neural Networks learned by back-propagation, AdaBoost,

Example: ERM does not always work

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

11/21

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- Consider a "cheating" learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- The empirical risk is $R_{\mathcal{T}^m}(h_m) = 0$ with probability 1 for any m.
- The expected risk is $R(h_m) = 0.8$ for any m.
- In case of unconstrained \mathcal{H} we have no guarantee that the empirical risk $R_{\mathcal{T}^m}(h_m)$ is a good approximation of the true risk $R(h_m)$ regardless the number of examples m.

Errors characterizing a learning algorithm

- The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- The predictor $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m has risk $R(h_m)$

Excess error measures deviation of the learned predictor from the best one:

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Questions:

- Which of the quantities are random and which are not?
- What cases the errors?

• How do the errors depend on $\mathcal H$ and the number of examples m?

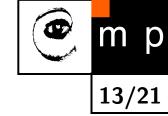
Statistically consistent learning algorithm

Definition 1. The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is statistically consistent in $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ if for any p(x, y) and $\varepsilon > 0$ it holds that

$$\lim_{m \to \infty} \mathbb{P}\bigg(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\bigg) = 0$$

where $h_m = A(\mathcal{T}^m)$ is the hypothesis returned by the algorithm A for training set \mathcal{T}^m generated from p(x, y).

 The statistically consistent means that we can make the estimation error arbitrarily small if we have enough examples.



Uniform Law of Large Numbers

Definition 2. The hypothesis space $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ satisfies the uniform law of large numbers if for all $\varepsilon > 0$ it holds that

$$\lim_{m \to \infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right| \ge \varepsilon \right) = 0$$

 ULLN says that the probability of seeing a "bad training set" for at least one hypothesis from H can be made arbitrarily low if we have enough examples.

Theorem 2. If \mathcal{H} satisfies ULLN then ERM is statistically consistent in \mathcal{H} .

Proof: ULLN implies consistency of ERM

For fixed \mathcal{T}^m and $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ we have:

$$R(h_m) - R(h_{\mathcal{H}}) = \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_m) - R(h_{\mathcal{H}}) \right)$$
$$\leq \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_{\mathcal{H}}) - R(h_{\mathcal{H}}) \right)$$
$$\leq 2 \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$$

15/21

Therefore $\varepsilon \leq R(h_m) - R(h_{\mathcal{H}})$ implies $\frac{\varepsilon}{2} \leq \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$ and

$$\mathbb{P}\bigg(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\bigg) \le \mathbb{P}\bigg(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\bigg)$$

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).

ULLN for finite hypothesis space

• Let us assume a finite hypothesis space $\mathcal{H} = \{h_1, \dots, h_K\}$.

ullet We define the set of all "bad" training sets for a hypothesis $h\in\mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

• We use the union bound to upper bound the probability of seeing a bad training set for at least one hypothesis from $h \in \mathcal{H}$

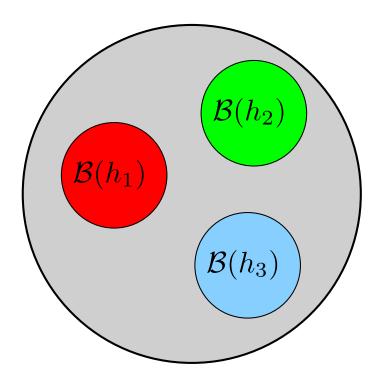
$$\mathbb{P}\left(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^{m}}(h)-R(h)|\geq\varepsilon\right) \\
=\mathbb{P}\left(\mathcal{T}^{m}\in\mathcal{B}(h_{1})\bigvee\mathcal{T}^{m}\in\mathcal{B}(h_{2})\bigvee\cdots\bigvee\mathcal{T}^{m}\in\mathcal{B}(h_{K})\right) \\
\leq\sum_{h\in\mathcal{H}}\mathbb{P}(\mathcal{T}^{m}\in\mathcal{B}(h))$$

ULLN for finite hypothesis space

Example: the union bound for three hypotheses



$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \bigvee \mathcal{T}^m \in \mathcal{B}(h_2) \bigvee \mathcal{T}^m \in \mathcal{B}(h_3)\Big) \le \sum_{i=1}^3 \mathbb{P}(\mathcal{T}^m \in \mathcal{B}(h_i))$$



• The union bound is tight if the events are mutually exclusive (i.e. each \mathcal{T}^m is bad for one hypothesis at most) as is shown in the figure.

ULLN for finite hypothesis space

Combining the union bound with the Hoeffding inequality yields

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq\sum_{h\in\mathcal{H}}\mathbb{P}(\mathcal{T}^m\in\mathcal{B}(h))\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

Therefore we see that

$$\lim_{m \to \infty} \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) = 0$$

Corollary 1. The finite hypothesis space satisfies the uniform law of large numbers.

Confidence intervals for finite hypothesis space

We have generalized the Hoeffding inequality for a finite hypothesis space H:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

For which ε is R(h) in the interval $(R_{\mathcal{T}^m}(h) - \varepsilon, R_{\mathcal{T}^m}(h) + \varepsilon)$ with the probability $1 - \delta$ at least, regardless what $h \in \mathcal{H}$ we consider ?

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big) = 1 - \mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$$
$$\ge 1 - 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}} = 1 - \delta$$

and solving the last equality for ε yields

$$\varepsilon = (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

Generalization bound for finite hypothesis space

Theorem 3. Let \mathcal{H} be a finite hypothesis space and $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set draw from i.i.d. random variables with distribution p(x, y). Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

20/21

$$R(h) \le R_{\mathcal{T}^m}(h) + (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

holds for any $h \in \mathcal{H}$ and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

- The "worst-case" bound in Theorem 3 holds for any $h \in \mathcal{H}$, in particular, for the ERM algorithm which minimizes the first term.
- The second term suggests that we have to use \mathcal{H} with appropriate cardinality (complexity); e.g. if m is small and $|\mathcal{H}|$ is high we can overfit.

Summary

Topics covered in the lecture:

- Prediction problem
- Test risk and its justification by the law of large numbers
- Empirical Risk Minimization
- Excess error = estimation error + approximation error
- Statistical consistency of learning algorithm
- Uniform law of large numbers
- Generalization bound for finite hypothesis space

