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Overview

Topics covered in the lecture:

� Neuron types

� Layers

� Loss functions

� Computing loss gradients via backpropagation

� Learning neural networks

� Regularization

http://cmp.felk.cvut.cz
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McCulloch-Pitts Perceptron

x1

x2

xn wn

w2

w1

b

ŷ
P

s...

x =
(
x1, x2, . . . , xn

)T ∈ Rn input
ŷ ∈ {−1, 1} output (activity)
w =

(
w1, w2, . . . , wn

)T ∈ Rn weights
b ∈ R bias (threshold)
s ∈ R inner potential

f(s) =

{
−1 if s < 0

1 else
activation function

ŷ = f(s) = f

(
n∑
i=1

wixi + b

)
= f (w · x+ b)
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McCulloch-Pitts Perceptron: Treating Bias

1
w0 = b

x1

x2

xn wn

w2

w1

ŷ
P

s...

� Treat bias as an extra fixed input x0 = 1 and weighted w0 = b:

ŷ = f (w · x+ b) = f (w · x+ w0 · 1) = f (w′ · x′)

� x′ =
(
x0, x1, . . . , xn

)T ∈ Rn+1

� w′ =
(
w0, w1, . . . , wn

)T ∈ Rn+1

� Unless otherwise noted we will use x, w instead of x′, w′

http://cmp.felk.cvut.cz
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Activation Functions
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� Sigmoid: σ(s) ,
1

1 + e−s
=

es

es + 1

� Note: tanh(s) =
es − e−s

es + e−s
= 2σ(s)− 1
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Linear Neuron

� Single neuron with linear activation function ≡ linear regression:

ŷ = s = x ·w, ŷ, s ∈ R

� Inputs: X =

1 x11 . . . x1n
1 ... . . . ...
1 xm1 . . . xmn

 =

xT1...
xTm


� Targets: y =

(
y1, . . . , ym

)T , yi ∈ Rm

� Outputs: ŷ =
(
ŷ1, . . . , ŷm

)T , ŷi ∈ Rm

� For the whole dataset we get:

ŷ = Xw, ŷ ∈ Rm

http://cmp.felk.cvut.cz
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Linear Neuron: Maximum Likelihood Estimation

� Assumption: data are Gaussian distributed with mean xi ·w and
variance σ2:

yi ∼ N
(
xi ·w, σ2

)
= xi ·w +N

(
0, σ2

)
� Likelihood for i.i.d. data:

p (y|X,w, σ) =

m∏
i=1

p (yi|xi,w, σ) =

m∏
i=1

(
2πσ2

)−1
2 e
− 1

2σ2
(yi−w·xi)2 =

=
(
2πσ2

)−m2 e− 1
2σ2

∑m
i=1(yi−w·xi)

2

=

=
(
2πσ2

)−m2 e− 1
2σ2

(y−Xw)T (y−Xw)

� Negative Log Likelihood:

L (w) =
m

2
log
(
2πσ2

)
+

1

2σ2
(y −Xw)

T
(y −Xw)
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Linear Neuron: Maximum Likelihood Estimation (contd.)

� Note that
∑m
i=1 (yi −w · xi)2 = (y −Xw)

T
(y −Xw) is the

sum-of-squares or squared error (SE)

� Minimization of L (w) ≡ least squares estimaton

� Solving ∂L
∂w = 0 we get w∗ =

(
XTX

)−1
XTy (see seminar)

� Note X̂=
(
XTX

)−1
XT is called the Moore-Penrose pseudo-inverse: if

X is square and invertible then X̂=X−1 (use (AB)
−1

= B−1A−1)

http://cmp.felk.cvut.cz
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Sigmoid and Probability

� Denote: ŷ = σ(s), ŷ ∈ (0, 1)

� Sigmoid output can represent a parameter of the Bernoulli distribution:

p(y|ŷ) = Ber(y|ŷ) = ŷy (1− ŷ)
1−y

=

{
ŷ for y = 1

1− ŷ for y = 0

� Motivation: log-odds linear model (see AE4B33RPZ)

� Binary classifier: h(ŷ) =

{
1 if ŷ > 1

2

0 else

http://cmp.felk.cvut.cz
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Logistic Regression

� MCP neuron using sigmoid activation function ≡ logistic regression:

ŷ = σ(w · x), ŷ ∈ (0, 1)

� Inputs: X =

1 x11 . . . x1n
1 ... . . . ...
1 xm1 . . . xmn

 =

xT1...
xTm


� Target class: y =

(
y1, . . . , ym

)T , yi ∈ {0, 1}
� Output class: ŷ =

(
ŷ1, . . . , ŷm

)T , ŷi ∈ (0, 1)

http://cmp.felk.cvut.cz
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Cross-Entropy

� Likelihood, for the logistic regression:

p(y|w,X) =

m∏
i=1

Ber(yi|ŷi) =

m∏
i=1

ŷyii (1− ŷi)1−yi

� Negative Log Likelihood:

L(w) = −
m∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)]

� This loss function is called the cross-entropy

http://cmp.felk.cvut.cz
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Maximum Likelihood Estimation

� Maximum Likelihood Estimation: w∗ = argmin
w
L(w)

� Derivative of the loss w.r.t. to the sigmoid argument: ∂L
∂si

= ŷi − yi

� Gradient w.r.t. logistic regression parameters:

∂L
∂w

=

m∑
i=1

∂L
∂si
· ∂si
∂w

=

m∑
i=1

xi(ŷi − yi) = XT (ŷ − y)

�
∂L
∂w

= 0 has no analytical solution =⇒ use numerical methods

� Hessian: ∂
2L

∂w2
=

m∑
i=1

ŷi(1− ŷi)xi · xi = XTSX,

where S , diag(ŷi(1− ŷi))
� Hessian is positive definite, hence the loss is convex and has unique
global minimum (see AE4B33RPZ)

http://cmp.felk.cvut.cz
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Rectified Linear Unit (ReLU)

� Definition f(s) = max(0, s)

� Fast to compute

� Helps with vanishing gradients problem: the gradient is constant for
s > 0, while for sigmoid-like activations it becomes increasingly small

� Leads to sparse representations: s < 0 turns the neuron completely off

� Unbounded: use regularization to prevent numerical problems

� Might block gradient propagation → dead units → Leaky ReLU

� Satisfies the universal approximation property

http://cmp.felk.cvut.cz
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Multilayer Perceptron (MLP)

softmax

X
X

X

hidden
layer 1

hidden
layer 2

output
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fully

connected

...
... ...

...
...

......
...

� Feed-forward ANN

� Fully-connected layers

� MLP for regression would typically use linear output layer

http://cmp.felk.cvut.cz
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Recurrent Neural Network (RNN)

P

P P
...

...

� Fully-Connected Recurrent Neural Network (FRNN)

� Both inputs and outputs are sequences

� Feedback connections → memory

http://cmp.felk.cvut.cz
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Modular and Hierarchical Architectures

module

module

� Layers can be organized in modules
� Hierarchies of modules
� Module reuse

http://cmp.felk.cvut.cz
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Linear Layer

� Output k: ŷk = x ·wk, k = 0, 1, . . . ,K

� All outputs using weight matrix W: ŷ = xTW

� Multiple samples: Ŷ = XW

W =

wT
1
...
wT
K


T

=

w01 . . . w0K
... . . . ...

wn1 . . . wnK



X =

xT1...
xTm

 =

1 x11 . . . x1n
1 ... . . . ...
1 xm1 . . . xmn

 Ŷ =

ŷT1...
yTm

 =

 ŷ11 . . . ŷ1K
... . . . ...

ŷm1 . . . ŷmK



http://cmp.felk.cvut.cz
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Softmax Layer

softmax

1

2

3

K

s1

s2

sK

s3

ŷ1

ŷ2

ŷ3

ŷK

...
...

...

� Multinominal classification

� Definition: σk(s) ,
esk∑K
c=1 e

sc
, where K is the number of classes

� Softmax represents a probability distribution: 0 ≤ σk ≤ 1 for
k ∈ {1 . . .K} and

∑K
c=1 σc = 1

� Describes class membership probabilities: p(y = k|s) = σk(s)

http://cmp.felk.cvut.cz
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Softmax Layer (contd.)

� Target: y =
(
y1 . . . ym

)T , yi ∈ {1, 2, . . . ,K}
� One-hot encoding for sample i and class k: let yik = I{yi = k} and
ŷik = I{ŷi = k}

� Likelihood:

p(y|w,X) =

m∏
i=1

K∏
c=1

ŷyicic

� Negative Log Likelihood:

L(w) = −
m∑
i=1

K∑
c=1

I{yi = c} log(ŷic)

Again the cross-entropy

� See seminar for the gradient

http://cmp.felk.cvut.cz
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Multinominal Logistic Regression

� linear layer + softmax layer = multinominal logistic regression:

ŷk = σk(wk · x)

x1

x2

xn
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� Classifier: h(x,W) = argmax
k

ŷk
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Loss Functions: Summary

problem suggested loss function
binary classification cross-entropy

−
m∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)]

multinominal classification multinominal cross-entropy

−
m∑
i=1

K∑
c=1

I{yi = c} log(ŷic)

regression squared error
m∑
i=1

(yi − ŷi)2

multi-output regression squared error
m∑
i=1

K∑
c=1

(yic − ŷic)2

� Mean w.r.t. to m is often used

http://cmp.felk.cvut.cz
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Backpropagation Overview

� A method to compute gradient of the loss function with respect to its
parameters

� Here, we present the "modular" backpropagation (see Nando de Freitas’
Machine Learning course: https://www.cs.ox.ac.uk/people/
nando.defreitas/machinelearning/)

� Let us use multinominal logistic regression as an example

x1

x2

xn

1 1

2

3

K

softmax

1

2

3

K

X

s1

s2

sK

s3

ŷ1

ŷ2

ŷ3

ŷK

...
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...

L

y

loss
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Backpropagation: the Loss Function

� The loss function is the multinominal cross-entropy in this case:

L(w) = −
m∑
i=1

K∑
c=1

I{yi = c} log

(
exp (xi ·wc)∑K
k=1 exp (xi ·wk)

)

x1

x2

xn

1 1

2

3

K

softmax

1

2

3

K

X

s1

s2

sK

s3

ŷ1

ŷ2

ŷ3

ŷK

...
...

...
...

L

yz

1 = x

z2 = s z3 = ŷ z4 = L

loss
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Backpropagation Based on Modules

� Computation of ∇L(w) involves repetitive use of the chain rule

� We can make things simpler by divide and conquer approach

� Divide to simplest possible modules (these can be later combined into
complex hierarchies)

� Represent even the loss function as a module

� Passing messages

http://cmp.felk.cvut.cz
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Backpropagation: Backward Pass Message

� Let δl = ∂L
∂zl

be the sensitivity of the loss to the module output for
layer l, then:

δli =
∂L
∂zli

=
∑
j

∂L
∂zl+1
j

·
∂zl+1
j

∂zli
=
∑
j

δl+1
j

∂zl+1
j

∂zli

� We need to know how to compute derivatives of outputs w.r.t. inputs
only!

http://cmp.felk.cvut.cz
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Backpropagation: Parameters

� Similarly if the module has parameters we want to know how the loss
changes w.r.t. them:

∂L
∂wli

=
∑
j

∂L
∂zl+1
j

·
∂zl+1
j

∂wli
=
∑
j

δl+1
j

∂zl+1
j

∂wli

� Derivatives of module outputs w.r.t. to the parameters are all we need

http://cmp.felk.cvut.cz
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Backpropagation: Steps

� So for each module we need only to specify these three messages:
forward: zl+1 = f(zl)

backward: ∂z
l+1

∂zl

parameter (optional): ∂z
l+1

∂wl

http://cmp.felk.cvut.cz
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Example: Linear Layer

� forward: zl+1
j =

n∑
i=0

wijz
l
i, j = 1, . . . ,K

� backward:
∂zl+1
j

∂zli
= wij, i = 0, . . . , n, j = 1, . . . ,K

� parameter:
∂zl+1
j

∂wik
= I{j = k}zli

http://cmp.felk.cvut.cz
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Example: Squared Error

� forward: zl+1 =
1

2

K∑
i=1

(
yi − zli

)2
, i ∈ {1, . . . , n}

� backward: ∂z
l+1
i

∂zl
= yi − zli, i ∈ {1, . . . , n}

http://cmp.felk.cvut.cz
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Gradient Descent

� Task: find parameters which minimize loss over the training dataset:

θ∗ = argmin
θ
L(θ)

where θ is a set of all parameters defining the ANN (e.g., all weight
matrices)

� Gradient descent: θ(t+1) = θ(t) − η(t)∇L(θ(t))

where η(t) > 0 is the learning rate or step size at iteration t

http://cmp.felk.cvut.cz
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Batch, Online and Mini-Batch Learning

When to update weights?

� (Full) Batch learning: after all patterns are used (epoch)

• inefficient for redundant datasets

� Online learning: after each training pattern

• noise can help overcome local minima but can also harm the
convergence in the final stages while fine-tuning

• Stochastic Gradient Descent (SGD) does this

• convergence almost surely to local minimum when η(t) decreases
appropriately in time

� Mini-batch learning: after a small sample of training patterns

http://cmp.felk.cvut.cz
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Momentum

� Simulate inertia to overcome plateaus in the error landscape:

v(t+1) = µv(t) − η(t)∇L(θ(t))

θ(t+1) = θ(t) + v(t+1)

where µ ∈ [0, 1] is the momentum parameter

� Momentum damps oscillations in directions of high curvature

� It builds velocity in directions with consistent (possibly small) gradient

http://cmp.felk.cvut.cz
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Nesterov’s Momentum

� Different approach by Nesterov (1983, convex optimization):

v(t+1) = µv(t) − η(t)∇L(θ(t) +µv(t) )

θ(t+1) = θ(t) + v(t+1)

� While classic momentum corrects the velocity using gradient at θ(t),
Nesterov uses θ(t) + µv(t) which is similar to θ(t+1)

� Stronger theoretical convergence guarantees for convex functions
� Slightly better in practice
� For more details see Sutskever et al.: On the importance of initialization
and momentum in deep learning, 2013

Nesterov

classic

�⌘(t)rL(✓(t) + µv(t))

�⌘(t)rL(✓(t))

✓(t) ✓(t)

✓(t+1)
✓(t+1)

µv(t) µv(t)

v(t+1)
v(t+1)

http://cmp.felk.cvut.cz
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Annealing the Learning Rate

� Decrease the learning rate in the course of optimization.

� Step decay: reduce the learning rate by a factor (e.g., 1
2) every few

iterations

� Exponential decay: set ηt = η0e
−kt for the iteration t

� Hyperbolic decay: set ηt = η0
1+kt

http://cmp.felk.cvut.cz
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Resilient Propagation (Rprop)

� Motivation: a magnitude of gradient differs a lot for different Parameters
� Rprop (Riedmiller and Braun, 1992) does not use gradient value - the
step size for each weight is adapted using its sign, only

1 for each θi
2 if ∂L

(t−1)

∂θi
· ∂L

(t)

∂θi
> 0

3 ∆
(t)
i = min

(
∆

(t−1)
i · η+,∆max

)
4 elseif ∂L

(t−1)

∂θi
· ∂L

(t)

∂θi
< 0

5 ∆
(t)
i = max

(
∆

(t−1)
i · η−,∆min

)
6 θ

(t+1)
i = θ

(t)
i − sign

(
∂L(t)
∂θi

)
·∆(t)

i

where the step size ∆
(t)
i ∈ [∆min,∆max] and 0 < η− < 1 < η+

� Typically order of magnitude faster than basic Gradient Descent
� Does not work well for mini-batches
� Igel and Hüsken: Improving the Rprop Learning Algorithm, 2000

http://cmp.felk.cvut.cz
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Adagrad

� Adaptive Gradient method

� Idea: reduce learning rates for parameters having high values of gradient

g
(t+1)
i = g

(t)
i +

(
∂L
∂θ

(t)
i

)2

θ
(t+1)
i = θ

(t)
i −

η√
g
(t+1)
i + ε

· ∂L
∂θ

(t)
i

� gi accumulates squared partial derivatives w.r.t. to the parameter θi

� ε is a small positive number to prevent division by zero

� Weakness: ever increasing gi leads to slow convergence eventually

http://cmp.felk.cvut.cz
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RMSProp

� Similar to Adagrad but employs a moving average:

g
(t+1)
i = γg

(t)
i + (1− γ)

(
∂L
∂θ

(t)
i

)2

� γ is a decay parameter (typical value γ = 0.9)

� Unlike for Adagrad updates do not get infinitesimally small

http://cmp.felk.cvut.cz
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Adam (Adaptive Moment Estimation)

� Kingma and Ba: Adam: A Method for Stochastic Optimization, 2014

m
(t+1)
i = β1m

(t)
i + (1− β1)

∂L
∂θ

(t)
i

m̂
(t+1)
i =

m
(t+1)
i

1− β1m(t)
i

v
(t+1)
i = β2v

(t)
i + (1− β2)

(
∂L
∂θ

(t)
i

)2

v̂
(t+1)
i =

v
(t+1)
i

1− β2v(t)i

θ
(t+1)
i = θ

(t)
i − η

m̂
(t+1)
i√

v̂
(t+1)
i + ε

� mi and vi are first and second raw moment estimates of gradient (mean
and uncentered variance)

� m̂i and v̂i are corrections of mi and vi as these are biased to zero due to
initialization mi = vi = 0

� β1 and β2 are decay parameters

http://cmp.felk.cvut.cz
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Second Order Methods

� Newton’s method for optimization:

θ(t+1) = θ(t) −
(
∇2L(θ(t))

)−1
∇L(θ(t))

� No parameters needed

� Need to compute the Hessian matrix and invert it!

� Approximations, e.g., L-BFGS are not suitable for mini-batches

http://cmp.felk.cvut.cz
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Regularization

� How to deal with overfitting?

• get more data

• find simpler model, search for optimal architecture, e.g., number,
type and size of layers

• use regularization

� Most types of regularization are based on penalties for model complexity

� Bayesian point of view: introduce prior distribution on model parameters

http://cmp.felk.cvut.cz
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L2 Regularization

� Recall the solution for the linear regression w∗ =
(
XTX

)−1
XTy

� What if XTX has no inverse?
� We can modify the solution by adding a small element to the diagonal:

w∗ =
(
XTX + λI

)−1
XTy, λ > 0

� It turns out that this approach no only helps with inverting XTX but it
also improves model generalization

� It is the solution of the regularized loss function:

L (w) = (y −Xw)
T

(y −Xw) + λwTw

this one is called the L2 regularization, see seminar for the derivation
� The term λwTw = λ ‖w‖22 minimizes the size of the weight vector
� Note that we omit bias in λwTw

http://cmp.felk.cvut.cz
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L2 Regularization (contd.)

� L2 regularization is also called the ridge regression or the weight decay
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L2 Regularization as Gaussian Prior

� Recall the likelihood:

p (y|w,X) =
(
2πσ2

)−m2 e− 1
2σ2

(y−Xw)T (y−Xw)

� Define a Gaussian prior with zero mean and variance σ2
0 for the

parameters:

p (w) =
(
2πσ2

0

)−1
2 e
− 1

2σ20
wTw

� Then the posterior is:

p(w|y,X) =
p(y|w,X) · p(w)

p(y|X)

The denominator does not depend on the parameters w:

p(w|y,X) ∝ p(y|w,X) · p(w)

http://cmp.felk.cvut.cz
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MAP Estimate

� Maximizing p(w|y,X) gives us the Maximum a posteriori (MAP)
estimate:

wMAP = argmax
w

p(w|y,X) = argmin
w

(− log p(w|y,X))

where

− log p(w|y,X) =
1

2σ2
(y −Xw)

T
(y −Xw) +

1

2σ2
0

wTw + C

� We can omit C, define λ =
σ2

σ2
0

and minimize the loss function we
already know:

L (w) = (y −Xw)
T

(y −Xw) + λwTw

http://cmp.felk.cvut.cz
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Weight Decay Discussion

� Having zero mean Gaussian prior keeps the weights smaller

� Weight decay is widely used for most types of layers in ANNs

� Intuition: sigmoid-like neurons kept near zero potential (via small
weights) behave similarly to linear neurons

� The same works for other models, e.g., polynomial regression

� λ is usually set using cross validation

http://cmp.felk.cvut.cz


Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Srivastava et al.: A Simple Way to Prevent Neural Networks from Overfitting, 2014
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Dropout

� Idea: average many neural networks, share weights to make this
computationally feasible

� For each training example omit a unit with probability p (often p = 0.5)

� This is like sampling from 2U networks where U is the number of units

� Typically only a small amount of 2U networks is actually sampled

� Prevents coadaptation of feature detectors

http://cmp.felk.cvut.cz
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Dropout (contd.)

� How to make predictions with networks using dropout?
� Scale outputs (output weights) of all affected units by p
� For a linear unit taking inputs from the dropout layer we have:

s =

n∑
i=1

wiδixi, p(δi|p) = Ber(δi|p)

E(s) =

n∑
i=1

wiE(δi)xi = p

n∑
i=1

wixi

where the expectation is computed over all 2n configurations
� For general neural networks we still get a good approximation of the
expectation when scaling by p

� See Baldi and Sadowski: The Dropout Learning Algorithm, 2014
� When used for inputs higher values of p are suggested

http://cmp.felk.cvut.cz
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Other Regularization Approaches

� L1 regularization: sum absolute values, i.e., use λ ‖w‖1
� Early stopping: start with small weights, stop when validation loss starts
to grow

� Randomize inputs: same as the weight decay for linear neurons

� Noisy weights

� DropConnect: connection-based dropout

� Other weight sharing approaches: Convolutional Neural Networks

� Model averaging

http://cmp.felk.cvut.cz
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Next Lecture

� Deep Neural Networks

� Convolutional Neural Networks

� Autoencoders

� Transfer learning

http://cmp.felk.cvut.cz
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Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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