# B(E)3M33UI: Competencies 

Petr Pošík

March 28, 2017


#### Abstract

List of competencies students shall gain after completing course Artificial Intelligence taught at Czech Technical University in Prague, Dept. of Cybernetics, primarilly for (but not limited to) students of Cybernetics and Robotics master study programme, branch Robotics.


## 1 Bayesian decision tasks. Non-bayesian tasks. Empirical learning.

After this lecture, a student shall be able to ...

- explain various view on AI and describe the differences of their personal view of AI;
- describe the fields of science with the greatest effect on AI;
- define Bayesian decision task and all its components (decision strategy, risk, penalty function, observation, hidden state, joint probability distribution);
- solve simple instances of Bayesian decision task by hand, write a computer program solving Bayesian decision tasks;
- explain features of Bayesian strategy;
- recognize special cases of Bayesian decision task (minimization of error probability when estimating hidden state, strategy with "dontknow" decision);
- describe reasons and examplify situations when the Bayesian approach cannot be used;
- define and describe examples of non-Bayesian tasks which can be solved to some extent without learning (Neyman-Pearson, minimax, Wald);
- solve simple instances of the above non-Bayesian decision tasks by hand, write a computer program solving them;
- define the decision strategy design as a learning from data;
- describe the differences between Bayesian decision tasks, non-Bayesian decision tasks and decision tasks solved by learning;
- define the types of learning (supervised, unsupervised, semisupervised, reinforcement) and describe conceptual differences between them;
- define classification and regression types of problems, recognize them in practical situations;
- describe 2 approaches to learning (as parameter estimation, as direct optimal strategy design) and give examples of surrogate criteria used in them.


## 2 Linear methods for regression and classification.

After this lecture, a student shall be able to ...

- define and recognize linear regression model (with scalar parameters, in scalar product form, in matrix form, non-homogenous and homogenous coordinates);
- define the loss function suitable for fitting a regression model;
- explain the least squares metod, draw an illustration;
- compute coefficients of simple (1D) linear regression by hand, write a computer program computing coefficients for multiple regression;
- explain the concept of discrimination function for binary and multinomial classification;
- define a loss function suitable for fitting a classification model;
- describe a perceptron algorithm, perform a few iterations by hand;
- explain the characteristics of perceptron algorithm;
- describe logistic regression, the interpretation of its outputs, and why we classify it as a linear model;
- define loss functions suitable for fitting logistic regression;
- define optimal separating hyperplane, explain in what sense it is optimal;
- define what a margin is, what support vectors are, and explain their relation;
- compute the margin given the parameters of separating hyperplane for which $\min _{i: y^{(i)}=+1}\left(x^{(i)} w^{T}+w_{0}\right)=1$ and $\max _{i: y^{(i)}=-1}\left(x^{(i)} w^{T}+w_{0}\right)=-1$;
- formulate the primary quadratic programming task which results in the optimal separating hyperplane (including the soft-margin version);
- compute the parameters of optimal hyperplane given the set of support vectors and their weights.


## 3 Non-linear models. Basis expansion. Overfitting. Regularization.

After this lecture, a student shall be able to ...

- explain the reason for doing basis expansion (feature space straightening), and describe its principle;
- show the effect of basis expansion with a linear model on a simple example for both classification and regression settings;
- implement user-defined basis expansions in certain programming language;
- list advantages and disadvantages of basis expansion;
- explain why the error measured on the training data is not a good estimate of the expected error of the model for new data, and whether it under- or overestimates the true error;
- explain basic methods to get unbiased estimate of the true model error (testing data, k-fold crossvalidation, LOO crossvalidation);
- describe the general form of dependency of the model training and testing errors on the model complexity/flexibility/capacity
- define overfitting;
- discuss high bias and high variance problems of models;
- explain how to proceed if a suitable model complexity must be chosen as part of the training process;
- list 2 basic methods of overfitting prevention;
- describe the principles of ridge (Tikhonov) and lasso regularizations and their effects on the model parameters.


## 4 Nearest neighbors. Kernels, SVM. Decision trees.

After this lecture, a student shall be able to ...

- explain, use, and implement method of $k$ nearest neighbors for both classification and regression;
- explain the influence of $k$ to the form of the final model;
- describe advantages and disadvantages of $k$-NN, and suggest a way hot to find a suitable value of $k$;
- show how to force the algorithm for learning the optimal separating hyperplane to find a nonlinear model using basis expansion, and using a kernel function;
- explain the meaning of kernels, and their advantages compared to basis expansion;
- explain the principle of support vector machine;
- describe the structure of classification and regression tree, and the way it is used to determine a prediction;
- know a lower bound on the number of Boolean decision trees for a dataset with $n$ attributes;
- describe TDIDT algorithm and its features, and know whether it will find the optimal tree;
- explain how to choose the best attribute for a split, and be able to manually perform the choice for simple examples;
- describe 2 methods to prevent tree overfitting, and argue which of them is better;
- explain how a decision tree can handle missing data during training and during prediction;
- describe what happens and what to do if the dataset contains an attribute with unique value for each observation;
- explain how to handle continuous input and output variables (as opposed to the discrete attributes).


## 5 Bagging. Random forests. Boosting.

After this lecture, a student shall be able to . .

- describe the basic principle behind all committee/ensemble methods;
- list and conceptually compare several methods to achieve diversity among models trained on the same data, and know which of these methods are used in which ensemble algorithms;
- explain the purpose and the basic principle of stacking;
- explain how a bootstrap sample is created from the available data, and describe its properties;
- describe features of bagging;
- explain how to compute out-of-bag error estimate when using bagging;
- explain the principle of random forests and describe their difference to bagging with trees;
- explain how to compute a score of variable importance using random forest;
- explain the hypothesis boosting problem, and define a weak and a strong classifier in this context;
- explain the basic principle of AdaBoost.M1 algorithm;
- relate the training error of the AdaBoost algorithm to the number of constituent models and to the errors of individual models;
- describe the relations of AdaBoost.M1, L2Boost, and Gradient Boosting.


## 6 Bayesian networks.

After this lecture, a student shall be able to ...

- explain why the joint probability distribution is an awkward model of domains with many random variables;
- define what a Bayesian network is, and describe how it solves the issues with joint probability;
- explain how BN factorize the joint distribution, and compare it with the factorization we get from chain rule;
- write down factorization of the joint probability given the BN graph, and vice versa, draw the BN graph given a factorization of the joint probability;
- explain the relation between the direction of edges in BN and the causality;
- given the structure of a BN , check whether 2 variables are guaranteed to be independent using the concept of D-separation;
- describe and prove the conditional (in)dependence relations among variable triplets (causual chain, common cause, common effect);
- describe inference by enumeration and explain why it is unwieldy for BN;
- explain the difference between inference by enumeration and by variable elimination (VE);
- explain what makes VE more suitable for BN than enumeration;
- describe the features (complexity) of exact inference by enumeration and VE in BN;
- explain how we can use sampling to make approximate inference in BN;
- describe Gibbs sampling.

