Constraint Satisfaction Problem

Radek Mařík

FEE CTU, K13132

May 9, 2017

\footnote{Based on the slides created by Stuart Russell}
1 Methodology Overview
 - Basic Definitions

2 Algorithms
 - Generate and Test
 - Backtracking search
 - Variable and value ordering heuristics
 - Forward checking
 - Node consistency, arc consistency, path consistency
 - Local search for CSPs: min-conflict heuristic
Objectives [RN10]

Constraint Satisfaction Problem (CSP)

1. Define **possible worlds** in terms of **variables** and their **domains**
2. Specify **constraints** to represent real-world problems
3. Verify whether a possible world satisfies a set of constraints
What is a CSP? [RN10]

A CSP is defined by

1. A finite set \mathcal{V} of variables V_i, $i = 1, \ldots, n$
2. A nonempty domain $D_i = \text{dom}(V_i)$ of possible values for each variable $V_i \in \mathcal{V}$
3. A finite set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that variables can take for subsets of the variables

Example 1

- $\mathcal{V} = \{V_1\}$
 - $D_1 = \text{dom}(V_1) = \{1, 2, 3, 4\}$
 - $C = \{C_1, C_2\}$
 - $C_1: V_1 \neq 2$
 - $C_2: V_1 > 1$

- $\mathcal{V} = \{V_1, V_2\}$
 - $D_1 = \{1, 2, 3\}$, $D_2 = \{1, 2\}$
 - $C = \{C_1, C_2, C_3\}$
 - $C_1: V_1 \neq 2$
 - $C_2: V_1 + V_2 < 5$
 - $C_3: V_1 > V_2$
A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.

Example 2

\[V = \{ V_1 \} \]
\[D_1 = \text{dom}(V_1) = \{1, 2, 3, 4\} \]
\[C = \{ C_1, C_2 \} \]
\[C_1: V_1 \neq 2 \]
\[C_2: V_1 > 1 \]

All models for this CSP:

\[\{ V_1 = 3 \} \]
\[\{ V_1 = 4 \} \]
Possible Worlds

A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.
- i.e. a model is a possible world that satisfies all constraints
- a CSP solution

Example 3

\[V = \{ V_1, V_2 \} \]
- \[D_1 = \{ 1, 2, 3 \}, \quad D_2 = \{ 1, 2 \} \]
- \[C = \{ C_1, C_2, C_3 \} \]
 - \[C_1: V_1 \neq 2 \]
 - \[C_2: V_1 + V_2 < 5 \]
 - \[C_3: V_1 > V_2 \]

Possible worlds for this CSP:
- \[\{ V_1 = 1, V_2 = 1 \} \]
- \[\{ V_1 = 1, V_2 = 2 \} \]
- \[\{ V_1 = 2, V_2 = 1 \} \] (a model)
- \[\{ V_1 = 2, V_2 = 2 \} \]
- \[\{ V_1 = 3, V_2 = 1 \} \] (a model)
- \[\{ V_1 = 3, V_2 = 2 \} \]
Example: Map Coloring Problem

Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{\text{red, green, blue}\}$

Constraints: adjacent regions must have different colors

- e.g. $WA \neq NT$ (if the language allows this), or
- $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}$
Example: Map Coloring Model

Solutions are assignments satisfying all constraints, e.g.,

\[
\{ WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \}
\]
Constraints

Constraints are restrictions on the values that one or more variables can take:

- **Unary constraint**: a restriction involving a single variable
 - e.g.: \(V_2 \neq 2 \)
- **\(k \)-ary constraint**: a restriction involving \(k \) different variables
 - e.g. binary \((k = 2)\): \(V_1 + V_2 < 5 \)
 - e.g. 3-ary: \(V_1 + V_2 + V_4 < 5 \)
 - We will mostly deal with binary constraints \((k = 2)\).

Constraints can be specified by

1. listing all combinations of valid domain values for the variables participating in the constraint
 - e.g. for constraint \(V_1 > V_2 \) and \(\text{dom}(V1) = \{1, 2, 3\} \) and \(\text{dom}(V2) = \{1, 2\} \):
 \[\{v(V_1, V_2)\} = \{(2, 1), (3, 1), (3, 2)\} \]
2. giving a function (predicate) that returns true if given values for each variable which satisfy the constraint else false: \(V_1 > V_2 \)
Each constraint C_i is a pair $<\text{scope}, \text{relation}>$

Relation...a list of allowed combinations of variable values.

Scope

The *scope* of a constraint is the set of variables that are involved in the constraint.

Example 4

- $V_2 \neq 2$ has scope $\{V_2\}$
- $V_1 > V_2$ has scope $\{V_1, V_2\}$
- $V_1 + V_2 + V_4 < 5$ has scope $\{V_1, V_2, V_4\}$
- How many variables are in the scope of a k-ary constraint?
 - k variables
A finite constraint satisfaction problem (FCSP) is a CSP with a finite set of variables and a finite domain for each variable.

- We will only study finite CSPs here but many of the techniques carry over to countably infinite and continuous domains. We use CSP here to refer to FCSP.
- The scope of each constraint is automatically finite since it is a subset of the finite set of variables.
We may want to solve the following problems with a CSP:

- determine whether or not a model exists
- find a model
- find all of the models
- count the number of models
- find the best model, given some measure of model quality
 - this is now an optimization problem
- determine whether some property of the variables holds in all models
What is a solution?

- **State** is an assignment of values to some or all variables.
 - An assignment is **complete** when every variable has a value.
 - An assignment is **partial** when some variables have no values.
- **Consistent assignment**
 - The assignment does not violate the constraints.
- A **solution** to a CSP is a complete and consistent assignment.
- Some CSPs require a solution that maximizes an **objective function**.
- **Preferences** (soft constraints): can be represented using costs, and lead to **constrained optimization problems**.
Even the simplest problem of determining whether or not a model exists in a general CSP with finite domains is **NP-hard**

- There is no known algorithm with worst case polynomial runtime.
- We can’t hope to find an algorithm that is polynomial for all CSPs.

However, we can try to:

- find efficient (polynomial) **consistency algorithms** that reduce the size of the search space
- identify **special cases** for which algorithms are efficient
- work on **approximation algorithms** that can find good solutions quickly, even though they may offer no theoretical guarantees
- find algorithms that are fast on **typical** (not worst case) cases
Constraint Graph

- **Binary CSP**: each constraint relates at most two variables
- **Constraint graph**:
 - nodes are variables
 - arcs are binary constraints
- The structure of the graph can be exploited to provide problem solutions:
 - Graph can be used to simplify search
 - e.g. a decomposition into subproblems
Real-world CSPs

- Assignment problems (e.g. who teaches what class)
- Timetabling problems
 - e.g. which class is offered when and where?
- Hardware configuration
- Hardware verification (e.g. IBM)
- Transportation scheduling
- Factory scheduling
- Floor planning
- Puzzle solving (e.g. crosswords, sudoku)
- Software verification (small to medium programs)
Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

4 Queens Problem

- **Variables** Q_1, Q_2, Q_3, Q_4
- **Domains** $D_i = \{1, 2, 3, 4\}$
- **Constraints**
 - $Q_i \neq Q_j$ (cannot be in same row)
 - $|Q_i - Q_j| \neq |i - j|$ (or same diagonal)

Translate each constraint into a set of allowable values for its variables. E.g., values for (Q_1, Q_2) are $(1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)$
Generate and Test (GT) Algorithms

- Systematically check all possible worlds
 - Possible worlds: cross product of domains
 \[\text{dom}(V_1) \times \text{dom}(V_2) \times \cdots \times \text{dom}(V_n) \]

Generate and Test:
1. Generate possible worlds one at a time
2. Test constraints for each one.

Example 5

3 variables \(A, B, C \)

\[\text{for } a \in \text{dom}(A) \]
\[\text{for } b \in \text{dom}(B) \]
\[\text{for } c \in \text{dom}(C) \]
\[\text{if } \{A = a, B = b, C = c\} \text{ satisfies all constraints} \]
\[\text{return } \{A = a, B = b, C = c\} \]
fail
Standard search formulation (incremental)

- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 1. **Initial state**: the empty assignment, \emptyset
 2. **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment.
 \Rightarrow fail if no legal assignments (not fixable!)
 3. **Goal test**: the current assignment is complete

1. This is the same for all CSPs! 😊
2. Every solution appears at depth n with n variables
 \Rightarrow use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. $b = (n - \ell)d$ at depth ℓ, hence $n!d^n$ leaves!!!! 😞
Backtracking search

Variable assignments are commutative, i.e.,

\[WA = \text{red} \text{ then } NT = \text{green} \] same as \[NT = \text{green} \text{ then } WA = \text{red} \]

Only need to consider assignments to a single variable at each node

\(\Rightarrow b = d \) and there are \(d^n \) leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve \(n \)-queens for \(n \approx 25 \)
function BACKTRACKING-SEARCH(csp) returns solution/failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure
Backtracking example
Backtracking example
Backtracking example

[Diagram of a tree-like structure with regions marked in different colors, illustrating the backtracking process.]
Backtracking example
General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?
Minimum remaining values (MRV): choose the variable with the fewest legal values
Tie-breaker among MRV variables

Degree heuristic:

choose the variable with the most constraints on remaining variables
Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA	**NT**	**Q**	**NSW**	**V**	**SA**	**T**
[Images of Australia showing possible state assignments]
Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:

![Map showing constraint propagation](image)

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
</table>

NT and *SA* cannot both be blue!

Constraint propagation repeatedly enforces constraints locally
Arc consistency

Simplest form of propagation makes each arc consistent
\(X \rightarrow Y \) is consistent iff

for every value \(x \) of \(X \) there is some allowed \(y \)
Arc consistency

Simplest form of propagation makes each arc consistent $X \to Y$ is consistent iff

for every value x of X there is some allowed y
Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked
Arc consistency

Simplest form of propagation makes each arc consistent

$X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment
Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then
 for each \(X_k\) in \text{NEIGHBORS}[X_i] do
 add \((X_k, X_i)\) to queue

function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff succeeds
removed \leftarrow \text{false}
for each \(x\) in \text{DOMAIN}[X_i] do
 if no value \(y\) in \text{DOMAIN}[X_j] allows \((x,y)\) to satisfy the constraint \(X_i \leftrightarrow X_j\) then
 delete \(x\) from \text{DOMAIN}[X_i]; removed \leftarrow \text{true}
return removed

\(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\) (but detecting all is NP-hard)
Problem structure

- Tasmania and mainland are **independent subproblems**
- Identifiable as **connected components** of constraint graph
Suppose each independent subproblem has c variables out of n total.

- n/c subproblems, each of which takes at most d^c work to solve.
- Worst-case solution cost is $n/c \cdot d^c$, **linear** in n.

Example

- **Case 1:**
 - $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec

- **Case 2:**
 - $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec
Tree-structured CSPs

- Any try with \(n \) nodes has \(n - 1 \) arcs.
- The graph made directed arc-consistent in \(O(n) \) steps.
- Each step must compare up to \(O(d) \) possible domain values for 2 variables.

Theorem 6

Theorem: If the constraint graph has no loops, the CSP can be solved in \(O(n d^2) \) time

- Compare to general CSPs, where worst-case time is \(O(d^n) \)
- This property also applies to logical and probabilistic reasoning:
 - an important example of the relation between syntactic restrictions and the complexity of reasoning.
Algorithm for tree-structured CSPs

Algorithm

1. **Topological sort:**
 Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering.

 A
 B
 C
 D
 E
 F

2. For \(j \) from \(n \) down to 2, apply \texttt{REMOVEINCONSISTENT}(\text{Parent}(X_j), X_j)\.

3. For \(j \) from 1 to \(n \), assign \(X_j \) consistently with \text{Parent}(X_j)\.
Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O(d^c \cdot (n - c)d^2)$, very fast for small c
Iterative algorithms for CSPs

- Hill-climbing, simulated annealing typically work with “complete” states, i.e., all variables assigned.
- To apply to CSPs:
 1. allow states with unsatisfied constraints
 2. operators **reassign** variable values

Variable selection

- randomly select any conflicted variable
- **min-conflicts** heuristic:
 - choose value that violates the fewest constraints
 - i.e., hillclimb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

States: 4 queens in 4 columns \((4^4 = 256\) states)

Operators: move queen in column

Goal test: no attacks

Evaluation: \(h(n) = \text{number of attacks}\)

\[
\begin{align*}
\text{h = 5} & \quad \rightarrow & \quad \text{h = 2} & \quad \rightarrow & \quad \text{h = 0}
\end{align*}
\]
Performance of min-conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability
 - e.g. queens $n = 10,000,000$ in ≈ 50 steps
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

![Critical ratio graph](image)
Summary

- **CSPs** are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by *constraints* on variable values.

- **Basic solution:**
 - Backtracking = depth-first search with one variable assigned per node

- **Speed-ups:**
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
 - The CSP representation allows analysis of problem structure
 - Tree-structured CSPs can be solved in linear time

- **Iterative min-conflicts** is usually effective in practice
Stuart J. Russell and Peter Norvig.

Artificial Intelligence, A Modern Approach.