
B(E)3M33UI — Exercise J:
Hierarchical Task Net (HTN) Planning

Radek Mařík

April 25, 2017

1 HTN planning

The goal of this task is to become familiar with hierarchical planning by writing a
planning definition in Pyhop. The planning goal will be control a group of soldiers in
a predefined domain.

Basic ideas of HTN planning:

• Complex plans often have identifiable structure
• Structure can often be captured in the form of hierarchies of abstract subplans
• Subplans are often (nearly) independent of one another

We will use the Pyhop planner (https://bitbucket.org/dananau/pyhop/src), which
is a simple HTN planner written in python (planning algorithm is similar to that one
used in SHOP).

Installation: Download the package from course web page that contains: pyhop.py

and examples: travel_dana_nau.py,Blocks.py.

1.1 Travel example

A very simple example of traveling from home to park (consult lectures for more info).
It shows how to define operators (description of what basic actions do) and methods
(description of a possible way to perform a compound task by performing a collection
of subtasks).

Task 1: Get familiar with the travel example: travel_dana_nau.py

1.2 Blocks example

Another simple example but providing nice domain to demonstrate and study plan-
ning. The domain consists of:

• a set of blocks (A, B, C) and a table
• the blocks can be stacked one on one to form towers

1



• the stacking is performed by a robot arm
• one block at a time can be held and moved

A
B C A

B
C

Figure 1: Left: initial position, Right: goal position

We can use four actions (operators):

• unstack(A,B) – pick up clear block A from block B
• stack(A,B) – place block A using the robot arm onto clear block B
• pickup(A) – lift clear block A with the empty arm
• putdown(A) – place the held block A onto a free space on the table

And the predicates:

• pos(A,B) – block A is on block B
• clear(A) – block A has nothing on it
• holding(A) – the arm holds block A

Task 2: Look at the: Blocks.py example and try to understand it.

1.3 Soldiers

Task 3: The goal is to propose and implement a control for a group of soldiers. The
soldiers must accomplish several objectives by a cooperative behavior under some con-
straints.

An environment is modeled by a graph of non-oriented edges. If there is an edge
between two nodes, a soldier can move between these two vertices. There is also a
group of three soldiers in some vertices. In four vertices, one can also find monsters.
The mission objective is to destroy all the monsters.

Figure 2: Example map with soldiers and monsters

2



We begin the implementation with only one soldier and one monster. Then we
will add some additional constraints.

Task 4: Move soldiers: Plan a trip of a soldier from one node to another. e.g. from V11
to V16.

Hints:

• Map is represent using python dict(), hence the edge between two vertices can be

• Implement operator goto(soldier, to) that moves soldier from vertex to another if
there is a link between them

• Implement a method moveto(soldier, to) that recursively calls operator goto.

Task 5: Kill monsters: Add method kill-monster(soldier). The soldier goes to a mon-
ster and kill it (deletes it from the world. If there is no monster, it does not do anything.

Hints:

• Define and use operator killmonster(soldier, monster).

• A natural condition is that the soldier and the monster must be at the same loca-
tion (node), so the soldier must move to a location occupied by monster

We can see that using simple decomposition we can easily create a plan to move
soldiers and kill monsters. There are possible extensions so that task gets more inter-
esting.

Task 6: We add the following constraint: A monster can be killed by at least two sol-
diers - one is holding a supporting fire in a distance of exactly one edge from the mon-
ster and one is directly attacking the monster in the same node. (Soldier must attack
the monster whenever it gets to the same node as the monster).

Task 7: You are encouraged to use one of these (voluntary) constraints:

• During the attack, the attacking soldier is always injured by the monster. An
injured soldier cannot fight with the monster, but can hold the supporting fire.

• One of the soldiers is medic, which has a capability of healing an injured soldier.
The plan must contain an operator HEALING(medic, soldier), which can be ap-
plied only if medic and soldier are in the same node. For simplicity, the healing
takes infinitely short period.

• The medic cannot attack, but can hold the supporting fire.
• For safety reasons, maximum number of soldiers in one node is two.
• Each soldier must see at least one another soldier in the maximum distance of

one edge.
• The soldiers know the number and positions of all the monsters.

2 Have fun!

Complete the exercise as a homework, ask questions on the forum, and upload the
solution via Upload system!

3


	HTN planning
	Travel example
	Blocks example
	Soldiers

	Have fun!

