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In areas like

■ speech recognition,

■ robot localization,

■ medical monitoring,

■ language modeling,

■ DNA analysis,

■ . . . ,

we want to reason about a sequence of observations.
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In areas like

■ speech recognition,

■ robot localization,

■ medical monitoring,

■ language modeling,

■ DNA analysis,

■ . . . ,

we want to reason about a sequence of observations.

We need to introduce time (or space) into our models:

■ A static world is modeled using a variable for each of its aspects which are of interest.

■ A changing world is modeled using these variables at each point in time. The world is
viewed as a sequence of time slices.

■ Random variables form sequences in time or space.
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In areas like

■ speech recognition,

■ robot localization,

■ medical monitoring,

■ language modeling,

■ DNA analysis,

■ . . . ,

we want to reason about a sequence of observations.

We need to introduce time (or space) into our models:

■ A static world is modeled using a variable for each of its aspects which are of interest.

■ A changing world is modeled using these variables at each point in time. The world is
viewed as a sequence of time slices.

■ Random variables form sequences in time or space.

Notation:

■ Xt is the set of variables describing the world state at time t.

■ Xb
a is the set of variables from Xa to Xb.

■ E.g., Xt
1 corresponds to variables X1, . . . , Xt.
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In areas like

■ speech recognition,

■ robot localization,

■ medical monitoring,

■ language modeling,

■ DNA analysis,

■ . . . ,

we want to reason about a sequence of observations.

We need to introduce time (or space) into our models:

■ A static world is modeled using a variable for each of its aspects which are of interest.

■ A changing world is modeled using these variables at each point in time. The world is
viewed as a sequence of time slices.

■ Random variables form sequences in time or space.

Notation:

■ Xt is the set of variables describing the world state at time t.

■ Xb
a is the set of variables from Xa to Xb.

■ E.g., Xt
1 corresponds to variables X1, . . . , Xt.

We need a way to specify joint distribution over a large number of random variables
using assumptions suitable for the fields mentioned above.
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Transition model

■ In general, it specifies the probability
distribution over the current states
given all the previous states:

P(Xt|X
t−1
0 )

X0 X1 X2 X3 . . .
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Transition model

■ In general, it specifies the probability
distribution over the current states
given all the previous states:

P(Xt|X
t−1
0 )

X0 X1 X2 X3 . . .

■ Problem 1: Xt−1
0 is unbounded in size as t increases.

■ Solution: Markov assumption — the current state depends on only a finite fixed
number of previous states. Such processes are called Markov processes or Markov
chains.
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Transition model

■ In general, it specifies the probability
distribution over the current states
given all the previous states:

P(Xt|X
t−1
0 )

X0 X1 X2 X3 . . .

■ Problem 1: Xt−1
0 is unbounded in size as t increases.

■ Solution: Markov assumption — the current state depends on only a finite fixed
number of previous states. Such processes are called Markov processes or Markov
chains.

■ First-order Markov process:

P(Xt|X
t−1
0 ) = P(Xt|Xt−1)

X0 X1 X2 X3 . . .

■ Second-order Markov process:

P(Xt|X
t−1
0 ) = P(Xt|X

t−2
t−1)

X0 X1 X2 X3 . . .
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Transition model

■ In general, it specifies the probability
distribution over the current states
given all the previous states:

P(Xt|X
t−1
0 )

X0 X1 X2 X3 . . .

■ Problem 1: Xt−1
0 is unbounded in size as t increases.

■ Solution: Markov assumption — the current state depends on only a finite fixed
number of previous states. Such processes are called Markov processes or Markov
chains.

■ First-order Markov process:

P(Xt|X
t−1
0 ) = P(Xt|Xt−1)

X0 X1 X2 X3 . . .

■ Second-order Markov process:

P(Xt|X
t−1
0 ) = P(Xt|X

t−2
t−1)

X0 X1 X2 X3 . . .

■ Problem 2: Even with Markov assumption, there are infinitely many values of t. Do
we have to specify a different distribution in each time step?

■ Solution: assume a stationary process, i.e. the transition model does not change over
time:

P(Xt|X
t−1
t−k ) = P(Xt′ |X

t′−1
t′−k

)



Joint distribution of a Markov model

Markov Models
• Reasoning over
Time or Space

•Markov models

• Joint

•MC Example

• Prediction
• Stationary
distribution

• PageRank

HMM

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 34

Assuming a stationary first-order Markov chain,

X0 X1 X2 X3 . . .

the MC joint distribution is factorized as

P(XT
0 ) = P(X0)

T

∏
t=1

P(Xt|Xt−1).
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Assuming a stationary first-order Markov chain,

X0 X1 X2 X3 . . .

the MC joint distribution is factorized as

P(XT
0 ) = P(X0)

T

∏
t=1

P(Xt|Xt−1).

This factorization is possible due to the following assumptions:

Xt⊥⊥Xt−2
0 |Xt−1

■ Past X are conditionally independent of future X given present X.

■ In many cases, these assumptions are reasonable.

■ They simplify things a lot: we can do reasoning in polynomial time and space!
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Assuming a stationary first-order Markov chain,

X0 X1 X2 X3 . . .

the MC joint distribution is factorized as

P(XT
0 ) = P(X0)

T

∏
t=1

P(Xt|Xt−1).

This factorization is possible due to the following assumptions:

Xt⊥⊥Xt−2
0 |Xt−1

■ Past X are conditionally independent of future X given present X.

■ In many cases, these assumptions are reasonable.

■ They simplify things a lot: we can do reasoning in polynomial time and space!

Just a growing Bayesian network with a very simple structure.
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■ States: X = {rain, sun} = {r, s}

■ Initial distribution: sun 100%

■ Transition model: P(Xt|Xt−1)

As a conditional prob. table:

Xt−1 Xt P(Xt|Xt−1)

sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

As a state transition diagram (automaton):

rain sun

0.3

0.1

0.7 0.9

As a state trellis:

rain rain

sun sun

Xt−1 Xt

0.7

0.3
0.1

0.9
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■ States: X = {rain, sun} = {r, s}

■ Initial distribution: sun 100%

■ Transition model: P(Xt|Xt−1)

As a conditional prob. table:

Xt−1 Xt P(Xt|Xt−1)

sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

As a state transition diagram (automaton):

rain sun

0.3

0.1

0.7 0.9

As a state trellis:

rain rain

sun sun

Xt−1 Xt

0.7

0.3
0.1

0.9

What is the weather distribution after one step, i.e. P(X1) given P(X0 = s) = 1?

P(X1 = s) = P(X1 = s|X0 = s)P(X0 = s) + P(X1 = s|X0 = r)P(X0 = r) =

= ∑
x0

P(X1 = s|x0)P(x0) =

= 0.9 · 1 + 0.3 · 0 = 0.9
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A mini-forward algorithm:

■ What is P(Xt) on some day t? P(X0) and P(Xt|Xt−1) is known.

P(Xt) = ∑
xt−1

P(Xt, xt−1) =

= ∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

Step forward

P(xt−1)
︸ ︷︷ ︸

Recursion

■ P(Xt|xt−1) is known from the transition model.

■ P(xt−1) is either known from P(X0) or from previous step of forward simulation.
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A mini-forward algorithm:

■ What is P(Xt) on some day t? P(X0) and P(Xt|Xt−1) is known.

P(Xt) = ∑
xt−1

P(Xt, xt−1) =

= ∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

Step forward

P(xt−1)
︸ ︷︷ ︸

Recursion

■ P(Xt|xt−1) is known from the transition model.

■ P(xt−1) is either known from P(X0) or from previous step of forward simulation.

Example run for our example
starting from sun:

t P(Xt = s) P(Xt = r)

0 1 0
1 0.90 0.10
2 0.84 0.16
3 0.804 0.196
...

...
...

∞ 0.75 0.25

starting from rain:

t P(Xt = s) P(Xt = r)

0 0 1
1 0.3 0.7
2 0.48 0.52
3 0.588 0.412
...

...
...

∞ 0.75 0.25
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A mini-forward algorithm:

■ What is P(Xt) on some day t? P(X0) and P(Xt|Xt−1) is known.

P(Xt) = ∑
xt−1

P(Xt, xt−1) =

= ∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

Step forward

P(xt−1)
︸ ︷︷ ︸

Recursion

■ P(Xt|xt−1) is known from the transition model.

■ P(xt−1) is either known from P(X0) or from previous step of forward simulation.

Example run for our example
starting from sun:

t P(Xt = s) P(Xt = r)

0 1 0
1 0.90 0.10
2 0.84 0.16
3 0.804 0.196
...

...
...

∞ 0.75 0.25

starting from rain:

t P(Xt = s) P(Xt = r)

0 0 1
1 0.3 0.7
2 0.48 0.52
3 0.588 0.412
...

...
...

∞ 0.75 0.25

In both cases we end up in the stationary distribution of the MC.
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Informally, for most chains:

■ Influence of initial distribution decreases with time.

■ The limiting distribution is independent of the initial one.

■ The limiting distribution P∞(X) is called stationary distribution and it satisfies

P∞(X) = P∞+1(X) = ∑
x

P(X|x)P∞(x)
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Informally, for most chains:

■ Influence of initial distribution decreases with time.

■ The limiting distribution is independent of the initial one.

■ The limiting distribution P∞(X) is called stationary distribution and it satisfies

P∞(X) = P∞+1(X) = ∑
x

P(X|x)P∞(x)

More formally:

■ MC is called regular if there is a finite positive integer m such that after m time-steps,
every state has a nonzero chance of being occupied, no matter what the initial state is.

■ For a regular MC, a unique stationary distribution exists.
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Informally, for most chains:

■ Influence of initial distribution decreases with time.

■ The limiting distribution is independent of the initial one.

■ The limiting distribution P∞(X) is called stationary distribution and it satisfies

P∞(X) = P∞+1(X) = ∑
x

P(X|x)P∞(x)

More formally:

■ MC is called regular if there is a finite positive integer m such that after m time-steps,
every state has a nonzero chance of being occupied, no matter what the initial state is.

■ For a regular MC, a unique stationary distribution exists.

Stationary distribution for the weather example:

P∞(s) = P(s|s)P∞(s) + P(s|r)P∞(r)

P∞(r) = P(r|s)P∞(s) + P(r|r)P∞(r)

P∞(s) = 0.9P∞(s) + 0.3P∞(r)

P∞(r) = 0.1P∞(s) + 0.7P∞(r)

P∞(s) = 3P∞(r)

P∞(r) =
1

3
P∞(s)
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Informally, for most chains:

■ Influence of initial distribution decreases with time.

■ The limiting distribution is independent of the initial one.

■ The limiting distribution P∞(X) is called stationary distribution and it satisfies

P∞(X) = P∞+1(X) = ∑
x

P(X|x)P∞(x)

More formally:

■ MC is called regular if there is a finite positive integer m such that after m time-steps,
every state has a nonzero chance of being occupied, no matter what the initial state is.

■ For a regular MC, a unique stationary distribution exists.

Stationary distribution for the weather example:

P∞(s) = P(s|s)P∞(s) + P(s|r)P∞(r)

P∞(r) = P(r|s)P∞(s) + P(r|r)P∞(r)

P∞(s) = 0.9P∞(s) + 0.3P∞(r)

P∞(r) = 0.1P∞(s) + 0.7P∞(r)

P∞(s) = 3P∞(r)

P∞(r) =
1

3
P∞(s)

Two equations saying the same thing.
But we know that P∞(s) + P∞(r) = 1,
thus P∞(s) = 0.75 and P∞(r) = 0.25
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■ The most famous and successful application of stationary distribution.

■ Problem: How to order web pages mentioning the query phrases? How to compute
relevance/importance of the result?

■ Idea: Good pages are referenced more often; a random surfer spends more time on
highly reachable pages.

■ Each web page is a state.

■ Random surfer clicks on a randomly chosen link on a web page, but with a small
probability goes on a random page.

■ This defines a MC. Its stationary distribution gives the importance of individual
pages.

■ In 1997, this was revolutionary and Google quickly surpassed the other search
engines (Altavista, Yahoo, . . . ).

■ Nowadays, all search engines use link analysis along with many other factors (rank
getting less important over time).
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■ MCs are not that useful in practice. They assume all the state variables are observable.

■ In real world, some variables are observable, some are not (they are hidden).

■ At any time slice t, the world is described by (Xt, Et) where

■ Xt are the hidden state variables, and

■ Et are the observable variables (evidence, effects).

■ In general, the probability distribution over possible states given the past states is

P(Xt, Et|X
t−1
0 , Et−1

1 )

■ We assume that past observations have no effect on the current state and observation.
If we furthermore take the first-order Markov assumption, then

P(Xt, Et|X
t−1
0 , Et−1

1 ) = P(Xt, Et|Xt−1)

■ If we furthermore assume that Et is independent of Xt−1 given Xt, then

P(Xt, Et|Xt−1) = P(Xt|Xt−1)P(Et|Xt)

X0 X1 X2 X3
. . .

E1 E2 E3
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HMM is defined by

■ the initial state distribution P(X0),

■ the transition model P(Xt|Xt−1), and

■ the emission (sensor) model P(Et|Xt).

■ It defines the following factorization of the joint distribution

P(XT
0 , ET

1 ) = P(X0)
︸ ︷︷ ︸

Init. state

T

∏
t=1

P(Xt|Xt−1)
︸ ︷︷ ︸

Transition model

P(Et|Xt)
︸ ︷︷ ︸

Sensor model
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HMM is defined by

■ the initial state distribution P(X0),

■ the transition model P(Xt|Xt−1), and

■ the emission (sensor) model P(Et|Xt).

■ It defines the following factorization of the joint distribution

P(XT
0 , ET

1 ) = P(X0)
︸ ︷︷ ︸

Init. state

T

∏
t=1

P(Xt|Xt−1)
︸ ︷︷ ︸

Transition model

P(Et|Xt)
︸ ︷︷ ︸

Sensor model

Independence assumptions:

X2⊥⊥X0, E1|X1

E2⊥⊥X0, X1, E1|X2

X3⊥⊥X0, X1, E1, E2|X2

E3⊥⊥X0, X1, E1, X2, E2|X3

. . .

X0 X1 X2 X3
. . .

E1 E2 E3
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■ Speech recognition: E – acoustic signals, X – phonemes

■ Machine translation: E – words in source lang., X – translation options

■ Handwriting recognition: E – pen movements, X – (parts of) characters

■ EKG and EEG analysis: E – signals, X – signal characteristics

■ DNA sequence analysis:

■ E – responses from molecular markers, X = {A, C, G, T}

■ E = {A, C, G, T}, X – subsequences with interesting interpretations

■ Robot tracking: E – sensor measurements, X – positions on a map

■ Recognition in images with special arrangement, e.g. car registration labels: E –
images of columns of the registration label, X – characters forming the label
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Suppose you are in a situation with no chance of learning what the weather is today.

■ You may be a hard working Ph.D. student locked in your no-windows lab for several
days.

■ Or you may be a soldier guarding a military base hidden a few hunderd meters
underneath the Earth surface.

The only indication of the weather outside is your boss (or supervisor) coming to his
office each day, and bringing and umbrella or not.
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Suppose you are in a situation with no chance of learning what the weather is today.

■ You may be a hard working Ph.D. student locked in your no-windows lab for several
days.

■ Or you may be a soldier guarding a military base hidden a few hunderd meters
underneath the Earth surface.

The only indication of the weather outside is your boss (or supervisor) coming to his
office each day, and bringing and umbrella or not.

Random variables:

■ Rt: Is it raining on day t?

■ Ut: Did your boss bring an umbrella?

Rt−1 Rt Rt+1

Ut−1 Ut Ut+1

Transition model:

Rt−1 Rt P(Rt|Rt−1)

t t 0.7
t f 0.3
f t 0.3
f f 0.7

Emission model:

Rt Ut P(Ut|Rt)

t t 0.9
t f 0.1
f t 0.2
f f 0.8
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Filtering:

■ computing the posterior distribution over the current state given all the previous
evidence, i.e.

■ P(Xt|et
1).

■ AKA state estimation, or tracking.

■ Forward algorithm.
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Filtering:

■ computing the posterior distribution over the current state given all the previous
evidence, i.e.

■ P(Xt|et
1).

■ AKA state estimation, or tracking.

■ Forward algorithm.

Prediction:

■ computing the posterior distribution over the future state given all the previous
evidence, i.e.

■ P(Xt+k |e
t
1) for some k > 0.

■ The same “mini-forward” algorithm as in case of Markov Chain.
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Filtering:

■ computing the posterior distribution over the current state given all the previous
evidence, i.e.

■ P(Xt|et
1).

■ AKA state estimation, or tracking.

■ Forward algorithm.

Prediction:

■ computing the posterior distribution over the future state given all the previous
evidence, i.e.

■ P(Xt+k |e
t
1) for some k > 0.

■ The same “mini-forward” algorithm as in case of Markov Chain.

Smoothing:

■ computing the posterior distribution over the past state given all the evidence, i.e.

■ P(Xk |e
t
1) for some k ∈ (0, t)

■ It estimates the state better than filtering because more evidence is available.

■ Forward-backward algorithm.
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Recognition or evaluation of statistical model:

■ Compute the likelihood of an HMM, i.e. the probability of observing the data given
the HMM parameters,

■ P(et
1|θ).

■ If several HMMs are given, the most likely model can be chosen (as a class label).

■ Uses forward algorithm.



HMM tasks (cont.)

Markov Models

HMM

•MC to HMM

• Hidden MM

• HMM Examples

•W-U Example

• HMM tasks

• Filtering

• Online updates

• Forward algorithm

• Umbrella example

• Prediction

•Model evaluation

• Smoothing

• Umbrella smooth.

• Forward-backward

•Most likely seq.

• Viterbi

Summary

P. Pošík c© 2017 Artificial Intelligence – 16 / 34

Recognition or evaluation of statistical model:

■ Compute the likelihood of an HMM, i.e. the probability of observing the data given
the HMM parameters,

■ P(et
1|θ).

■ If several HMMs are given, the most likely model can be chosen (as a class label).

■ Uses forward algorithm.

Most likely explanation:

■ given a sequence of observations, find the sequence of states that has most likely
generated those observations, i.e.

■ arg max
xt

1

P(xt
1|e

t
1).

■ Viterbi algorithm (dynamic programming).

■ Useful in speech recognition, in reconstruction of bit strings transmitted over a noisy
channel, etc.
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Recognition or evaluation of statistical model:

■ Compute the likelihood of an HMM, i.e. the probability of observing the data given
the HMM parameters,

■ P(et
1|θ).

■ If several HMMs are given, the most likely model can be chosen (as a class label).

■ Uses forward algorithm.

Most likely explanation:

■ given a sequence of observations, find the sequence of states that has most likely
generated those observations, i.e.

■ arg max
xt

1

P(xt
1|e

t
1).

■ Viterbi algorithm (dynamic programming).

■ Useful in speech recognition, in reconstruction of bit strings transmitted over a noisy
channel, etc.

HMM Learning:

■ Given the HMM structure, learn the transition and sensor models from observations.

■ Baum-Welch algorithm, an instance of EM algorithm.

■ Requires smoothing, learning with filtering can fail to converge correctly.
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Recursive estimation:

■ Any useful filtering algorithm must maintain and update a current state estimate (as
opposed to estimating the current state from the whole evidence sequence each time),
i.e.

■ we want find a function u such that

P(Xt|e
t
1) = u(P(Xt−1|e

t−1
1 ), et)
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Recursive estimation:

■ Any useful filtering algorithm must maintain and update a current state estimate (as
opposed to estimating the current state from the whole evidence sequence each time),
i.e.

■ we want find a function u such that

P(Xt|e
t
1) = u(P(Xt−1|e

t−1
1 ), et)

This process will have 2 parts:

1. Predict the current state at t from the filtered estimate of state at t− 1.

2. Update the prediction with new evidence at t.
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Recursive estimation:

■ Any useful filtering algorithm must maintain and update a current state estimate (as
opposed to estimating the current state from the whole evidence sequence each time),
i.e.

■ we want find a function u such that

P(Xt|e
t
1) = u(P(Xt−1|e

t−1
1 ), et)

This process will have 2 parts:

1. Predict the current state at t from the filtered estimate of state at t− 1.

2. Update the prediction with new evidence at t.

P(Xt|e
t
1) = P(Xt|e

t−1
1 , et) = (split the evidence sequence)

= αP(et|Xt, et−1
1 )P(Xt|e

t−1
1 ) = (from Bayes rule)

= αP(et|Xt)P(Xt|e
t−1
1 ) (using Markov assumption)

where

■ α is a normalization constant,

■ P(et|Xt) is the update by evidence (known from sensor model), and

■ P(Xt|e
t−1
1 ) is the 1-step prediction. How to compute it?
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1-step prediction:

P(Xt|e
t−1
1 ) = ∑

xt−1

P(Xt, xt−1|e
t−1
1 ) = (as a sum over previous states)

= ∑
xt−1

P(Xt|xt−1, et−1
1 )P(xt−1|e

t−1
1 ) = (introduce conditioning on previous state)

= ∑
xt−1

P(Xt|xt−1)P(xt−1|e
t−1
1 ), (using Markov assumption)

where

■ P(Xt|xt−1) is known from transition model, and

■ P(xt−1|e
t−1
1 ) is the filtered estimate at previous step.
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1-step prediction:

P(Xt|e
t−1
1 ) = ∑

xt−1

P(Xt, xt−1|e
t−1
1 ) = (as a sum over previous states)

= ∑
xt−1

P(Xt|xt−1, et−1
1 )P(xt−1|e

t−1
1 ) = (introduce conditioning on previous state)

= ∑
xt−1

P(Xt|xt−1)P(xt−1|e
t−1
1 ), (using Markov assumption)

where

■ P(Xt|xt−1) is known from transition model, and

■ P(xt−1|e
t−1
1 ) is the filtered estimate at previous step.

All together:

P(Xt|e
t
1)

︸ ︷︷ ︸

new estimate

= α P(et|Xt)
︸ ︷︷ ︸

sensor model

∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

transition model

P(xt−1|e
t−1
1 )

︸ ︷︷ ︸

previous estimate
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P(Xt|e
t
1)

︸ ︷︷ ︸

new estimate

= α P(et|Xt)
︸ ︷︷ ︸

sensor model

∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

transition model

P(xt−1|e
t−1
1 )

︸ ︷︷ ︸

previous estimate

■ At every moment, we have a belief distribution over the states, B(X).

■ Initially, it is our prior distribution B(X) = P(X0).

■ The above update equation may be split into 2 parts:

1. Update for time step:

B(X)←∑
x′

P(X|x′) · B(X)

2. Update for a new evidence:

B(X)← αP(e|X) · B(X),

where α is a normalization constant.

■ If you update for time several times without evidence, it is a prediction several steps
ahead.

■ If you update for evidence several times without a time step, you incorporate
multiple measurements.

■ The forward algorithm does both updates at once and does not normalize!
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P(Xt|e
t
1)

︸ ︷︷ ︸

new estimate

= α P(et|Xt)
︸ ︷︷ ︸

sensor model

∑
xt−1

P(Xt|xt−1)
︸ ︷︷ ︸

transition model

P(xt−1|e
t−1
1 )

︸ ︷︷ ︸

previous estimate

Forward message: a filtered estimate of state at time t given the evidence et
1, i.e.

ft
def
= P(Xt|e

t
1).

Then

ft = αP(et|Xt) ∑
xt−1

P(Xt|xt−1) ft−1,

i.e.

ft = α · FORWARD( ft−1, et)

where

■ the FORWARD function implements the update equation above (without the
normalization), and

■ the recursion is initialized with f0 = P(X0).
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) =
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)

■ Update by evidence and normalize:
P(R1|u1) =
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)

■ Update by evidence and normalize:
P(R1|u1) = αP(u1|R1)P(R1) = α(0.9, 0.2) · (0.5, 0.5) = α(0.45, 0.1) = (0.818, 0.182)
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)

■ Update by evidence and normalize:
P(R1|u1) = αP(u1|R1)P(R1) = α(0.9, 0.2) · (0.5, 0.5) = α(0.45, 0.1) = (0.818, 0.182)

Day 2: 2nd observation U2 = true

■ Prediction: P(R2|u1) = ∑
r1

P(R2|r1)P(r1|u1) = (0.7, 0.3) · 0.818 + (0.3, 0.7) · 0.182 = (0.627, 0.373)
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)

■ Update by evidence and normalize:
P(R1|u1) = αP(u1|R1)P(R1) = α(0.9, 0.2) · (0.5, 0.5) = α(0.45, 0.1) = (0.818, 0.182)

Day 2: 2nd observation U2 = true

■ Prediction: P(R2|u1) = ∑
r1

P(R2|r1)P(r1|u1) = (0.7, 0.3) · 0.818 + (0.3, 0.7) · 0.182 = (0.627, 0.373)

■ Update by evidence and normalize:
P(R2|u1, u2) = αP(u2|R2)P(R2|u1) = α(0.9, 0.2) · (0.627, 0.373) = (0.883, 0.117)
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Day 0:

■ No observations, just prior belief: P(R0) = (0.5, 0.5).

Day 1: 1st observation U1 = true

■ Prediction: P(R1) = ∑
r0

P(R1|r0)P(r0) = (0.7, 0.3) · 0.5 + (0.7, 0.3) · 0.5 = (0.5, 0.5)

■ Update by evidence and normalize:
P(R1|u1) = αP(u1|R1)P(R1) = α(0.9, 0.2) · (0.5, 0.5) = α(0.45, 0.1) = (0.818, 0.182)

Day 2: 2nd observation U2 = true

■ Prediction: P(R2|u1) = ∑
r1

P(R2|r1)P(r1|u1) = (0.7, 0.3) · 0.818 + (0.3, 0.7) · 0.182 = (0.627, 0.373)

■ Update by evidence and normalize:
P(R2|u1, u2) = αP(u2|R2)P(R2|u1) = α(0.9, 0.2) · (0.627, 0.373) = (0.883, 0.117)

Probability of rain increased, because rain tends to persist.
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■ Filtering contains 1-step prediction.

■ General prediction in HMM is like filtering without adding a new evidence:

P(Xt+k+1|e
t
1) = ∑

xt+k

P(Xt+k+1|xt+k)P(xt+k |e
t
1)

■ It involves the transition model only.

■ From the time slice we have our last evidence, it is just a Markov chain over hidden
states:

■ Use filtering to compute P(Xt|et
1. This the initial state of MC.

■ Use mini-forward algorithm to predict further in time.

■ By predicting further in the future, we rocover the stationary distribution of the
Markov chain given by the transition model.
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■ Compute the likelihood of the evidence sequence given the HMM parameters, i.e.
P(et

1).

■ Useful for assesssing which of several HMMs could have generated the observation.
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■ Compute the likelihood of the evidence sequence given the HMM parameters, i.e.
P(et

1).

■ Useful for assesssing which of several HMMs could have generated the observation.

Likelihood message:

■ Similarly to forward message, we can define a likelihood message as

lt
def
= P(Xt, et

1)

■ It can be shown that the forward algorithm can be used to update the likelihood
message as well:

lt = FORWARD(lt−1, et)

■ The likelihood of et
1 is then obtained by summing out Xt:

Lt = P(et
1) = ∑

xt

l(t)

■ lt is a probability of longer and longer evidence sequence as time goes by, resulting in
numbers close to 0⇒ underflow problems.
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Compute the distribution over past state given evidence up to present:

P(Xk |e
t
1) for some k < t.
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Compute the distribution over past state given evidence up to present:

P(Xk |e
t
1) for some k < t.

Let’s factorize the distribution as follows:

P(Xk |e
t
1) = P(Xt|e

k
1, et

k+1) = (split the evidence sequence)

= αP(et
k+1|Xk , ek

1)P(Xk |e
k
1) = (from Bayes rule)

= α P(et
k+1|Xk)

︸ ︷︷ ︸

?

P(Xk |e
k
1)

︸ ︷︷ ︸

filtering, forward

(using Markov assumption)
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Compute the distribution over past state given evidence up to present:

P(Xk |e
t
1) for some k < t.

Let’s factorize the distribution as follows:

P(Xk |e
t
1) = P(Xt|e

k
1, et

k+1) = (split the evidence sequence)

= αP(et
k+1|Xk , ek

1)P(Xk |e
k
1) = (from Bayes rule)

= α P(et
k+1|Xk)

︸ ︷︷ ︸

?

P(Xk |e
k
1)

︸ ︷︷ ︸

filtering, forward

(using Markov assumption)

P(et
k+1|Xk) = ∑

xk+1

P(et
k+1|Xk, xk+1)P(xk+1|Xk) = (condition on Xk+1)

= ∑
xk+1

P(et
k+1|xk+1)P(xk+1|Xk) = (using Markov assumption)

= ∑
xk+1

P(ek+1, et
k+2|xk+1)P(xk+1|Xk) = (split evidence sequence)

= ∑
xk+1

P(ek+1|xk+1)
︸ ︷︷ ︸

sensor model

P(et
k+2|xk+1)

︸ ︷︷ ︸

recursion

P(xk+1|Xk)
︸ ︷︷ ︸

transition model

(using cond. independence)
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P(et
k+1|Xk) = ∑

xk+1

P(ek+1|xk+1)
︸ ︷︷ ︸

sensor model

P(et
k+2|xk+1)

︸ ︷︷ ︸

recursion

P(xk+1|Xk)
︸ ︷︷ ︸

transition model

Backward message:

bk
def
= P(et

k+1|Xk)

Then

bk = ∑
xk+1

P(ek+1|xk+1)bk+1P(xk+1|Xk)

i.e.

bk = BACKWARD(bk+1, ek+1)

where

■ the BACKWARD function implements the update equation above, and

■ the recursion is initialized by bt = P(et
t+1|Xt) = P(∅|Xt) = 1.
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The whole smoothing algorithm can then be expressed as

P(Xk |e
t
1) = αP(et

k+1|Xk)P(Xk |e
k
1) = α fk × bk ,

where

■ × denotes element-wise multiplication.

■ Both fk and bk can be computed by recursion in time:

■ fk by a forward recursion from 1 to k,

■ bk by a backward recursion from t to k + 1.
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The whole smoothing algorithm can then be expressed as

P(Xk |e
t
1) = αP(et

k+1|Xk)P(Xk |e
k
1) = α fk × bk ,

where

■ × denotes element-wise multiplication.

■ Both fk and bk can be computed by recursion in time:

■ fk by a forward recursion from 1 to k,

■ bk by a backward recursion from t to k + 1.

Smoothing the whole sequence of hidden states:

■ Can be computed efficiently by

■ a forward pass, computing and storing all the filtered estimates fk for k = 1→ t,
followed by

■ a backward pass, using the stored fks and computing bks on the fly for k = t→ 1.
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Filtering with uniform prior and observations U1 = true and U2 = true:

■ Day 0: No observations, just prior belief: P(R0) = (0.5, 0.5).

■ Day 1: Observation U1 = true: P(R1|u1) = (0.818, 0.182)

■ Day 2: Observation U2 = true: P(R2|u1, u2) = (0.883, 0.117)
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Filtering with uniform prior and observations U1 = true and U2 = true:

■ Day 0: No observations, just prior belief: P(R0) = (0.5, 0.5).

■ Day 1: Observation U1 = true: P(R1|u1) = (0.818, 0.182)

■ Day 2: Observation U2 = true: P(R2|u1, u2) = (0.883, 0.117)

Filtering versus smoothing:

■ Filtering estimates P(Rt) by using evidence up to time t, i.e. P(R1) is estimated by P(R1|u1), i.e. it
ignores future observation u2.

■ At t = 2, we have a new observation u2 which also brings some information about R1. We can thus
update the distribution about past state by future evidence by computing P(R1|u1, u2).
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Filtering with uniform prior and observations U1 = true and U2 = true:

■ Day 0: No observations, just prior belief: P(R0) = (0.5, 0.5).

■ Day 1: Observation U1 = true: P(R1|u1) = (0.818, 0.182)

■ Day 2: Observation U2 = true: P(R2|u1, u2) = (0.883, 0.117)

Filtering versus smoothing:

■ Filtering estimates P(Rt) by using evidence up to time t, i.e. P(R1) is estimated by P(R1|u1), i.e. it
ignores future observation u2.

■ At t = 2, we have a new observation u2 which also brings some information about R1. We can thus
update the distribution about past state by future evidence by computing P(R1|u1, u2).

Smoothing:

P(R1|u1, u2) = αP(R1|u1)P(u2|R1)

■ The first term is known from the forward pass.

■ The second term can be computed by the backward recursion:

P(u2|R1) = ∑
r2

P(u2|r2)P(∅|r2)P(r2|R1) = 0.9 · 1 · (0.7, 0.3) + 0.2 · 1 · (0.3, 0.7) = (0.69, 0.41).

■ Substituting back to the smoothing equation above:

P(R1|u1, u2) = α(0.818, 0.182)× (0.69, 0.41)
.
= (0.883, 0.117).
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Algorithm 1: FORWARD-BACKWARD(et
1, P0) returns a vector of prob. distributions

Input : et
1 – a vector of evidence values for steps 1, . . . , t

P0 – the prior distribution on the initial state
Local : f t

0 – a vector of forward messages for steps 0, . . . , t
b – the backward message, initially all 1s
st

1 – a vector of smoothed estimates for steps 1, . . . , t
Output: a vector of prob. distributions, i.e. the smoothed estimates st

1
1 begin
2 f0 ← P0

3 for i = 1 to t do
4 fi ← FORWARD( fi−1, ei)

5 for i = t downto 1 do
6 si ← NORMALIZE( fi−1 × b)
7 b← BACKWARD(b, ei)

8 return st
1
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Weather-Umbrella example problem:

■ Assume that the observation sequence over 5 days is
u5

1 = (true, true, f alse, true, true).

■ What is the weather sequence most likely to explain these observations?
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Weather-Umbrella example problem:

■ Assume that the observation sequence over 5 days is
u5

1 = (true, true, f alse, true, true).

■ What is the weather sequence most likely to explain these observations?

Possible approaches:

■ Approach 1: Enumeration of all possible sequences.

■ View each sequence as a possible path through the state trellis graph:

R1

true

f alse

R2

true

f alse

R3

true

f alse

R4

true

f alse

R5

true

f alse

■ There are 2 possible states for each of the 5 days, that is 25 = 32 different state
sequences r5

1.

■ Enumerate and evaluate them by computing P(rt
1, et

1), and choose the one with
the largest probability.

■ Intractable for longer sequences/larger state spaces. Can it be done more
efficiently?
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■ Approach 2: Sequence of most likely states?

■ Use smoothing to find a posterior distribution of rain P(Rk |u
t
1) for all time steps.

■ Then construct a sequence of most likely states

(arg max
r1

P(r1|u
t
1), . . . , arg max

rt
P(rt|u

t
1)).

■ But this is not the same as the most likely sequence

arg max
rt
1

P(rt
1|u

t
1)

■ Approach 3: Find arg maxrt
1

P(rt
1|u

t
1) using a recursive algorithm:

■ The likelihood of any path is the product of the transition probabilities along the
path and the probabilities of the given observations at each state.

■ The most likely path to certain state xt consists of the most likely path to some
state xt−1 followed by a transition to xt. The state xt−1 that will become part of
the path to xt is the one which maximizes the likelihood of that path.

■ Let’s define a recursive relationship between most likely path to each state xt−1

and most likely path to each state xt.
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A dynamic programming approach to finding most likely sequence of states.

■ We want to find arg max
xt

1

P(xt
1|e

t
1).

■ Note that arg max
xt

1

P(xt
1|e

t
1) = arg max

xt
1

P(xt
1, et

1). Let’s work with the joint.

■ Let’s define the max message:

mt
def
= max

xt−1
1

P(xt−1
1 , Xt, et

1) =

= max
xt−2

1 ,xt−1

P(et|Xt)P(Xt|xt−1)P(xt−1
1 , et−1

1 ) =

= P(et|Xt)max
xt−1

P(Xt|xt−1)max
xt−2

1

P(xt−1
1 , et−1

1 ) =

= P(et|Xt)max
xt−1

P(Xt|xt−1)mt−1 for t ≥ 2.

■ The recursion is initialized by m1 = P(X1, e1) = α · FORWARD(P(X0), e1).

■ At the end, we have the probability of the most likely sequence reaching each final
state.

■ The construction of the most likely sequence starts in the final state with the largest
probability, and runs backwards.

■ The algorithm needs to store for each xt its “best” predecesor xt−1.
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Weather-Umbrella example:

■ After applying

m1 = P(X1, e1) = α · FORWARD(P(X0), e1)and

mt = P(et|Xt)max
xt−1

P(Xt|xt−1)mt−1 for t ≥ 2,

we have the following:

Ut : true

.8182

.1818

m1

true

.5155

.0491

m2

f alse

.0361

.1237

m3

true

.0334

.0173

m4

true

.0210

.0024

m5

■ The most likely sequence is constructed by

■ starting in the last state with the highest probability, and

■ following the bold arrows backwards.

Note:

■ The probabilities for sequences of increasing length decrease towards 0, they can
underflow.

■ To remedy this, we can use the log-sum-exp approach.
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After this lecture, a student shall be able to . . .

■
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